
© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

..

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

Monitoring
IIS and

ASP.NET based
Applications

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

Contents

ASP.NET and IIS Monitoring Overview 3

Introduction 3

Typical Web Application Architecture 4

Key Monitoring Concepts 5

 Response Time or Latency 5

 Throughput 6

 Resource Utilization 6

 Metrics 6

IIS and System Resource Monitoring 7

 Processor 7

 Memory 8

 Disk I/O 9

 Network I/O 10

HTTP.sys 11

CLR and Managed Code 12

 Memory 12

 Contention 13

 Exceptions 13

IIS and ASP.NET Application Monitoring 15

Response Time and Latency 18

Throughput 18

Monitoring the Windows Event Logs 21

Monitoring the W3C Log 23

Monitoring the HTTPERR Log 26

Monitoring Web Site and Application Pools 29

Appendix A (Application Pool State System WMI Rule) 30

Appendix A (Web Site State System WMI Rule) 31

Appendix B (Performance Counter Details) 32

 ASP.NET Applications Counters 32

 Web Service Counters 34

Appendix C (HTTP API Reason Phrases) 35

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

ASP.NET and IIS Monitoring Overview

Introduction

This section provides an overview of how IIS works and the concepts
of how data is moved to and from the client.

1. When a client browser initiates an HTTP request for a resource
 on the Web server, HTTP.sys intercepts the request.

2. HTTP.sys - contacts WAS to obtain information from the
 configuration store.

3. WAS requests configuration information from the configuration
 store, applicationHost.config.

4. WWW Service receives configuration information, such as
 application pool and site configuration.

5. WWW Service uses the configuration information to configure HTTP.
 sys.

6. WAS start’s a worker process for the application pool to which the
 request was made?

7. The worker process processes the request and returns a response
 to HTTP.sys.

8. The client receives a response.

3

The diagram above illustrates the principal components
taking part in the request processing when using the IIS (6 and 7)
model.

IIS 6.0 and 7.0 receives HTTP requests in kernel mode
and delivers them to the application’s isolated worker
process.

When an HTTP request arrives at the kernel-mode HTTP Listener
(HTTP.sys, bottom), it checks the validity of the request. If the
request is invalid, the appropriate HTTP error is immediately
returned to the requester. If the request is valid, HTTP.sys checks
to see if it can handle the request from its cache. If the response
is in the cache, HTTP.sys sends the response immediately.
Otherwise, HTTP.sys puts the request in a separate request
queue for each worker process (application).

This has many advantages concerning reliability, too. Since
running in kernel mode, the request dispatching isn’t influenced
by crashes and malfunctions happing at user level, that is, in the
worker processes. Thereby, even if a worker process crashes,
the system is still capable of accepting incoming requests and
eventually restarts the crashed process.

It’s the worker process who is in charge of loading the ASP.NET
ISAPI extension, which, in turn, loads the CRL and delegates all
the work to the HTTP Runtime.

The w3wp.exe worker process, differently from the aspnet_
wp.exe process used in IIS 5 model, isn’t ASP.NET specific, and is
used to handle any kind of requests. The specific worker process
then decides which ISAPI modules to load according to the type
of resources it needs to serve.

Incoming requests are forwarded from the application pool queue
to the right worker process via a module loaded in IIS called Web
Administration Service (WAS). This module is responsible for
reading worker process, web application bindings from the IIS
metabase (IIS 6.0 compatibility) and forwarding the request to the
right worker process.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

If the necessary worker process is not listening on the request queue,
then HTTP.sys signals the Web Administration Service (WAS) to start
and configure a worker process based on the configuration information
stored in XML format in the metabase(IIS 6.0 compatibility) or
applicationhost.config (IIS 7.0).

If a worker process or a group of worker processes (called a Web
garden) is already started and connected to the request queue, the
worker process pulls the request from the queue, processes it through
any ISAPI filter or extension and Web application code, and returns the
response to the HTTP.sys and the requester.

The WAS also monitors the health of a worker process and if, for
example, the process does not respond or has exceeded a threshold
(e.g., the number of hours running or number of requests handled), WAS
coordinates with the HTTP Listener to hold requests in the queue while
WAS stops the worker process and restarts it.

Typical Web Application Architecture

Typical Web Applications utilise a three-tier architecture which has the
following three tiers:

Presentation Layer
This is the topmost level of the application. The presentation tier displays
information related to such services as browsing merchandise,
purchasing, and shopping cart contents. It communicates with other
tiers by outputting results to the browser/client tier and all other tiers in
the network. It consists of standard ASP documents, Windows forms,
etc. This is the layer that provides an interface for the end user into your
application. That is, it works with the results/output of the Business Tier
to handle the transformation into something usable and readable by the
end user.

4

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

5

Application Layer
(Business Logic/Data Access Logic)
The Application logic tier is pulled out from the presentation tier and,
as its own layer; it controls an application’s functionality by performing
detailed processing.

Business Tier - This is basically where the brains of your application
reside; it contains things like the business rules, data manipulation, etc.
This layer does NOT know anything about HTML, nor does it output it.
It does NOT care about ADO or SQL, and it shouldn’t have any code to
access the database or the like. Those tasks are assigned to each
corresponding layer above or below it.

Data Access Tier - This layer is where you will write some generic
methods to interface with your data. For example, we will write a method
for creating and opening a Connection object (internal). This Layer,
obviously, contains no data business rules or data manipulation/
transformation logic. It is merely a reusable interface to the database.

Data Layer
This tier consists of Database Servers. Here information is stored and
retrieved. This tier keeps data neutral and independent from application
servers or business logic. Giving data its own tier also improves
scalability and performance.

Basically, it is the Database Management System (DBMS) – SQL Server,
Access, Oracle, MySQL, and plain text (or binary) files, whatever you like.
This tier can be as complex and comprehensive as high-end products
such as SQL Server and Oracle, which do include the things like query
optimization, indexing, etc., all the way down to the simplistic plain text
files (and the engine to read and search these files). Some more
well-known formats of structured, plain text files include CSV, XML, etc.
Notice how this layer is only intended to deal with the storage and
retrieval of information. It doesn’t care about how you plan on
manipulating or delivering this data. This also should include your stored
procedures.

Key Monitoring Concepts

Response Time or Latency
Response time is the amount of time taken to respond to a
request. You can measure response time at the server or client
as follows:

• Latency measured at the server. This is the time taken by
 the server to complete the execution of a request. This
 does not take into account the client-to-server latency.
 This can be measured with the Argent Guardian using
 some of the Windows Performance counters.

• Latency measured at the client. The latency measured
 at the client includes the request queue, the time taken
 by the server to complete the execution of the request,
 and the network latency. You can measure this latency
 by recording the time taken between requesting a page
 and loading the last byte and can be measures with the

 Argent Sentry using the RSP_TREND_ANALYSIS rule.

By measuring latency, you can gauge whether your application
takes too long to respond to client requests based on a
predefined baseline of how the application best performs.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

6

Metrics

Metrics provide information about how close your application is
to your performance goals. In addition, they also help you
identify problem areas and bottlenecks within your
application. You can group various metric types under the
following categories:

• System - these metrics are related to processor, memory,
 disk I/O, and network I/O.

• Platform - these metrics are related to ASP.NET, and
 the .NET common language runtime (CLR).

• Application - these metrics include custom performance
 counters – provided as part of the development of the

 application.

• Service level - these are related to your application, such
 as orders per second and searches per second.

Throughput

Throughput is the number of requests that can be successfully served
by your application per unit time. It can vary depending on the load
(number of users) applied to the server. Throughput is usually
measured in terms of requests per second. In some systems,
throughput may go down when there are many concurrent users.
In other systems, throughput remains constant under pressure but
latency begins to suffer, perhaps due to queuing. Other systems have
some balance between maximum throughput and overall latency
under stress.

Resource Utilization

You identify resource utilization costs in terms of server and network
resources. The primary resources are the following:

• CPU

• Memory

• Disk I/O

• Network I/O

These can be monitored using the Argent Guardian and collecting
windows performance counter data. You can identify the resource cost
on a per-operation basis. Operations might include browsing a product
catalog, adding items to a shopping cart, or placing an order. You can
measure resource costs for a given user load or you can average
resource costs when the application is tested using a given workload
profile.

Workload Profile
A workload profile consists of an aggregate mix of users performing
various operations. For example, for a load of 200 concurrent
users, the profile might indicate that 20 percent of users perform order
placement, 30 percent add items to a shopping cart, while 50 percent
browse the product catalog. This helps you identify and optimize areas
that consume an unusually large proportion of server resources.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

7

IIS and System Resource Monitoring
When you need to measure how many system resources your
application consumes, you need to pay particular attention to the
following components that provide ‘horsepower’ to ensure the
application can perform at its best. The following Performance metrics
can be collected for reporting and alerting using the Argent Guardian.

Processor
To measure processor utilization you can use the following Windows
Performance counters:

Processor\% Processor Time
This counter is the primary indicator of processor activity. High values
many not necessarily be bad. However, if the other processor-related
counters are increasing linearly such as Processor Queue Length,
high CPU utilization may be worth investigating. Preferably combine
with System\Processor Queue Length counter.

Threshold: General figure for the threshold limit 90%

System\Processor Queue Length
If there are more tasks ready to run than there are processors, threads
queue up. The processor queue is the collection of threads that are
ready but not able to be executed by the processor because another
active thread is currently executing. A sustained or recurring queue of
more than two threads is a clear indication of a processor bottleneck.

Threshold: Average value consistently higher than 2 usually
indicates a bottleneck.

You should use this counter in conjunction with the Processor\%
Processor Time counter to determine if your application can benefit
from more CPUs. There is a single queue for processor time, even on
multiprocessor computers.

If the CPU is very busy (90 percent and higher utilization) and
the PQL average is consistently higher than 2 per processor
as defined below in the Argent Guardian Rule, you may have a
processor bottleneck that could benefit from additional CPUs.

Or, you could reduce the number of threads and queue more
at the application level. This will cause less context switching,
and less context switching is good for reducing CPU load. The
common reason for a PQL of 2 or higher with low CPU utiliza-
tion is that requests for processor time arrive randomly and
threads demand irregular amounts of time from the processor.
This means that the processor is not a bottleneck but that the
threading logic that needs to be improved.

Processor\% Privileged Time
This counter indicates the percentage of time a thread runs in
privileged mode. When your application calls operating system
functions (for example to perform file or network I/O or to al-
locate memory), these operating system functions are executed
in privileged mode.

Threshold: A figure that is consistently over 75 percent
 indicates a bottleneck.

Processor\% Interrupt Time
This counter indicates the percentage of time the processor
spends receiving and servicing hardware interrupts. This value
is an indirect indicator of the activity of devices that generate
interrupts, such as network adapters. A dramatic increase in
this counter indicates potential hardware problems.

Threshold: Depends on processor. Use Baseline value
from application testing.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

System\Context Switches/sec
Context switching happens when a higher priority thread preempts a
lower priority thread that is currently running or when a high priority
thread blocks. High levels of context switching can occur when many
threads share the same priority level. This often indicates that there
are too many threads competing for the processors on the system. If
you do not see much processor utilization and you see very low levels
of context switching, it could indicate that threads are blocked.

Below shows an Argent Guardian rule for Context Switches on a dual
processor machine.

Threshold: As a general rule, context switching rates of less than
 5,000 per second per processor are not worth worrying about.

If context switching rates exceed 15,000 per second per processor,
then there is a constraint.

Memory

To measure memory utilization and the impact of paging, you can use
the following performance counters:

Memory\Available Mbytes
This indicates the amount of physical memory available to processes
running on the computer. Note that this counter displays the last
observed value only. It is not an average.

Threshold: A consistent value of less than 20-25% of installed
RAM is an indication of insufficient memory. Need to calculate
for each particular machine as there total RAM may vary.

Memory\Page Reads/sec
This counter indicates that the working set of your process is
too large for the physical memory and that it is paging to disk.
It shows the number of read operations, without regard to the
number of pages retrieved in each operation. Higher values
indicate a memory bottleneck. If a low rate of page-read
operations coincides with high values for Physical Disk\%
Disk Time and Physical Disk\Avg. Disk Queue Length,
there could be a disk bottleneck. If an increase in queue length
is not accompanied by a decrease in the pages-read rate, a
memory shortage exists.

Threshold: Sustained values of five or more indicate a large
 number of page faults for read requests.

Memory\Pages/sec
This counter indicates the rate at which pages are read from or
written to disk to resolve hard page faults. Multiply the values
of the Physical Disk\Avg. Disk sec/Transfer and Memory\
Pages/sec counters. If the product of these counters exceeds
0.1, paging is taking more than 10 percent of disk access time,
which indicates that you need more RAM.

Threshold: Sustained values higher than five indicate a
 bottleneck.

Multiply the values of the Physical Disk\Avg Disk sec/
Transfer and Memory\Pages/sec counters. If the product
of these counters exceeds 0.1, paging is taking more than 10
percent of disk access time, which indicates that you need
more RAM. Below shows the construction of an Argent
Guardian Rule to provide tracking of the combined metrics to
alert when paging vs. Disk Access is greater that 10%

8

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

Memory\Pool Nonpaged Bytes
If there is an increase of 10 percent or more from its value at startup,
a serious leak is potentially developing.

Threshold: Watch for an increase of 10% or more from its value at
 system startup.

Server\Pool Nonpaged Failures
This counter indicates the number of times allocations from the
nonpaged pool have failed. It indicates that the computer’s
physical memory is too small. The nonpaged pool contains pages
from a process’s virtual address space that are not to be swapped out
to the page file on disk, such as a process’ kernel object table. The
availability of the nonpaged pool determines how many processes,
threads, and other such objects can be created. When allocations from
the nonpaged pool fail, this can be due to a memory leak in a process,
particularly if processor usage has not increased accordingly.

Threshold: Regular nonzero values indicate a bottleneck.

Cache\MDL Read Hits %
This counter provides the percentage of Memory Descriptor List (MDL)
Read requests to the file system cache, where the cache returns the
object directly rather than requiring a read from the hard disk.

Threshold: The higher this value, the better the performance of the
 file system cache. Values should preferably be as close to 100

percent as possible.

The following counters have no specific threshold and are provided to
identify memory issues and values will depend on the system
configuration.

Server\Pool Paged Failures
This counter indicates the number of times allocations from the paged
pool have failed. This counter indicates that the computer’s physical
memory or page file is too small.

Memory\Cache Bytes
Monitor the size of cache under different load conditions. This
counter displays the size of the static files cache. By default,
this counter uses approximately 50 percent of available
memory, but decreases if the available memory shrinks, which
affects system performance.

Memory\Cache Faults/sec
This counter indicates how often the operating system looks
for data in the file system cache but fails to find it. This value
should be as low as possible. The cache is independent of data
location but is heavily dependent on data density within the set
of pages. A high rate of cache faults can indicate insufficient
memory or could also denote poorly localized data.

Disk I/O

To measure disk I/O activity, you can use the following counters:

PhysicalDisk\Avg Disk Queue Length
This counter indicates the average number of both read and
writes requests that were queued for the selected disk during
the sample interval. The following rule shows the setup to alert
when Queue length is greater than 4 for a disk volume that
uses a RAID 1 array (2 Disk Spindles).

Threshold: Should not be higher than the number of
spindles plus two.

9

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

Use the values of the Avg. Disk Queue Length and % Disk Time
counters to detect bottleneck within the disk subsystem. Ensure Avg.
Disk Queue Length threshold is set for the number of spindles + 2

If these two counter values are consistently high, consider doing one
of the following:

Using a faster disk drive

Moving some files to an additional disk or server.

Adding disks to a RAID array, if one is being used.

PhysicalDisk\Avg. Disk sec/Transfer
This counter indicates the time, in seconds, of the average disk
transfer. This may indicate a large amount of disk fragmentation,
slow disks, or disk failures.

Threshold: Should not be more than 18 milliseconds.

PhysicalDisk\Avg Disk Read Queue Length
This counter indicates the average number of read requests that were
queued for the selected disk during the sample interval.

Threshold: Should be less than two.

PhysicalDisk\Avg Disk Write Queue Length
This counter indicates the average number of write requests that were
queued for the selected disk during the sample interval.

Threshold: Should be less than two.

PhysicalDisk\Avg Disk sec/Read
This counter indicates the average time, in seconds, of a read
of data from the disk.

Threshold: No specific value

PhysicalDisk\Disk Writes/sec
This counter indicates the rate of write operations on the disk.

Threshold: Depends on manufacturer’s specification.

Network I/O
To measure network I/O, you can use the following counters:

Network Interface\Bytes Total/sec
This counter indicates the rate at which bytes are sent and
received over each network adapter. This counter helps you
know whether the traffic at your network adapter is saturated
and if you need to add another network adapter. How quickly
you can identify a problem depends on the type of network
you have as well as whether you share bandwidth with other
applications.

Threshold: Sustained values of more than 80 percent
of network bandwidth.

Network Interface\Bytes Received/sec and Network
Interface\Bytes Sent/sec
This counter indicates the rate at which bytes are received or
sent over each network adapter. You can calculate the rate of
incoming/outgoing data as a part of total bandwidth. This will
help you know that you need to optimize on the incoming/out-
going data from/to the client or that you need to add another
network adapter to handle the traffic.

Threshold: No specific value.

Server\Bytes Total/sec
This counter indicates the number of bytes sent and received
over the network. Higher values indicate network bandwidth as
the bottleneck. If the sum of Bytes Total/sec for all servers is
roughly equal to the maximum transfer rates of your network,
you may need to segment the network.

Threshold: Value should not be more than 50 percent
 of network capacity.

10

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

HTTP.sys

Windows Server 2008, HTTP.sys has the following performance metric
counters to help you with monitoring, diagnosing, and capacity planning
for Web servers: The HTTP Server API component has the following per-
formance counters to help you with monitoring, diagnosing, and capacity
planning for Web servers:

HTTP Service Counters:

• Number of URIs in the cache, added since startup, deleted since
 startup, number of cache flushes

• Cache hits/second and Cache misses/second

HTTP Service URL Groups:

• Data send rate, data receive rate, bytes transferred
 (sent and received)

• Maximum # connections, connection attempts rate, GET and HEAD
 rate requests, total # requests

HTTP Service Request Queues:

• Number of requests in queue, age of oldest requests in queue
 (age of the last request in the queue)

• Rate of request arrivals into queue, rate of rejection, total #
 of rejected requests, rate of cache hits

Note: Only one instance of the HTTP Server API counters exists
per machine, as these counters represent the component-wide
state.

HTTP Service Url Groups performance counters, the instance will
match the Url Group ID. The Url Group ID can be viewed by
running netsh http show servicestate.

HTTP Service Request Queues performance counters, the
instance correspond to Request Queue Name (Application Pool
names). The Request Queue Name (if one exists) can be shown
by the same netsh http show servicestate. However, some
server applications may have unnamed Request Queues that
cannot be matched to a performance counter instance ID.

The following page show an example of netsh http show
servicestate.

11

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

C:\ netsh http show servicestate

Snapshot of HTTP service state (Server Session View):

Server session ID: FF00000020000001
 Version: 2.0
 State: Active
 Properties:
 Max bandwidth: 4294967295
 Timeouts:
 Entity body timeout (secs): 120
 Drain entity body timeout (secs): 120
 Request queue timeout (secs): 65535
 Idle connection timeout (secs): 120
 Header wait timeout (secs): 120
 Minimum send rate (bytes/sec): 240
 URL groups:
 URL group ID: FE00000040000001
 State: Active
 Request queue name: DefaultAppPool
 Properties:
 Max bandwidth: inherited
 Max connections: 4294967295
 Timeouts:
 Entity body timeout (secs): 120
 Drain entity body timeout (secs): 120
 Request queue timeout (secs): 65535
 Idle connection timeout (secs): 120
 Header wait timeout (secs): 0
 Minimum send rate (bytes/sec): 0
 Logging information:
 Log directory: C:\inetpub\logs\LogFiles\W3SVC1
 Log format: 0
 Number of registered URLs: 1
 Registered URLs:
 HTTP://*:80/

Request queues:
 Request queue name: Request queue is unnamed.
 Version: 1.0
 State: Active
 Request queue 503 verbosity level: Basic
 Max requests: 1000
 Number of active processes attached: 1
 Process IDs: 472

 Request queue name: DefaultAppPool
 Version: 2.0
 State: Active
 Request queue 503 verbosity level: Limited
 Max requests: 1000
 Number of active processes attached: 0
 Controller process ID: 1708
 Process IDs:

CLR and Managed Code

This section describes what you need to measure in relation to
the CLR and managed code and how you capture the key
metrics. This applies to all managed code, regardless of the
type of assembly, for example, ASP.NET application, Web
service, serviced component, and data access component.

When measuring the processes running under CLR some of the
key points to look for are as follows:

Memory -
Measure managed and unmanaged memory consumption.

Working set -
Measure the overall size of your application’s working set.

Exceptions -
Measure the effect of exceptions on performance.

Contention -
Measure the effect of contention on performance.

Threading -
Measure the efficiency of threading operations

Memory
To measure memory consumption, use the following counters:

Process (w3wp)\Private Bytes
The committed memory owned by this process in bytes.
Memory leaks are identified by a consistent and prolonged
increase in Private Bytes. This is the best performance counter
for detecting memory leaks.

Threshold: the minimum of 60% of physical RAM.
Values greater than 60% of total physical RAM begin to have
an impact upon performance, especially during application

 and process restarts. The likelihood of an
OutOfMemoryException greatly increases when Private
Bytes exceeds 800 MB in a process with a virtual address

 space limit of 2 GB or 1800MB in a process with a virtual
address space limit of 3GB

 There may be multiple worker processes for the Application.
Then use a Regular expression to do the match.

12

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

.NET CLR Memory\% Time in GC
This counter indicates the percentage of elapsed time spent
performing a garbage collection since the last garbage collection
cycle. The most common cause of a high value is making too many
allocations, which may be the case if you are allocating on a
per-request basis for ASP.NET applications. You need to study the
allocation profile for your application if this counter shows a higher
value.

Threshold: This counter should average about 5 percent for most
 applications when the CPU is 70 percent busy, with occasional

peaks. As the CPU load increases, so does the percentage of time
 spent performing garbage collection. Keep this in mind when you
 measure the CPU.

Contention
.NET CLR LocksAndThreads\Contention Rate / sec
This counter displays the rate at which the runtime attempts to acquire
a managed lock but without a success. You may want to run dedicated
tests for a particular piece of code to identify the contention rate for
the particular code path.

Threshold: No specific value. Sustained nonzero values may be a
 cause of concern

.NET CLR LocksAndThreads\Current Queue Length
This counter displays the last recorded number of threads currently
waiting to acquire a managed lock in an application. You may want to
run dedicated tests for a particular piece of code to identify the
average queue length for the particular code path. This helps you
identify inefficient synchronization mechanisms

Threshold: No specific value. Use Baseline Application Tests to
 Define.

Exceptions
.NET CLR Exceptions\# of Exceps Thrown / sec
This counter indicates the total number of exceptions generated
per second in managed code. Exceptions are very costly and
can severely degrade your application performance. You should
investigate your code for application logic that uses exceptions
for normal processing behavior.

Response.Redirect, Server.Transfer, and Response.End all
cause a ThreadAbortException in ASP.NET applications.

Threshold: This counter value should be less than 5 percent
 of Request/sec for the ASP.NET application. If you see more
 than 1 request in 20 throw an exception, you should pay
 closer attention to it.

The # of Exceps Thrown counter displays the number of
exceptions thrown in an application, because these can have
performance implications. However, some code paths rely on
exceptions for proper functioning. For example, the Redirect
method on the Response object throws the
ThreadAbortException exception, which cannot be caught.

Therefore, it can be useful to track this value along with the
Errors Total counter to see if the exception generated an error
in the application.

13

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

Process (w3wp)\Handle Count

Threshold: 2000. A handle count of 2000 in w3wp is suspicious,
 and 10,000 are far beyond acceptable limits. Noticeable

performance degradation will occur if the total handle count for all
 processes exceeds approximately 40,000, which is entirely

achievable during a denial-of-service attack against IIS

Thread\Thread State

You need to monitor this counter when you fear that a particular thread
is consuming most of the processor resources.

Thread State is the current state of the thread. It is 0 for Initialized, 1
for Ready, 2 for Running, 3 for Standby, 4 for Terminated, 5 for Wait, 6
for Transition, 7 for Unknown. A Running thread is using a processor;
a Standby thread is about to use one. A Ready thread wants to use
a processor, but is waiting for a processor because none are free. A
thread in Transition is waiting for a resource in order to execute, such
as waiting for its execution stack to be paged in from disk. A Waiting
thread has no use for the processor because it is waiting for a
peripheral operation to complete or a resource to become free.

14

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

IIS and ASP.NET Application Monitoring
Below is a review of performance counters that are useful for
monitoring ASP.NET application performance. The following section
indicates several performance counters that are generally needed and
recommended by Microsoft in their Patterns and Practices for .NET
application performance. Some counters For example, the session
state and transactions performance counters are only necessary when
the features are used.

You measure ASP.NET performance primarily by using system
performance counters. The diagram above shows the main
performance counters that you use to measure ASP.NET performance
and how they relate to the ASP.NET request processing cycle.

A few thresholds are recommended based upon best practice with
debugging and testing ASP.NET applications. Web Administrators
should determine whether to raise alerts when these thresholds are
exceeded based upon their experience. In most cases, alerts are
appropriate, especially if the threshold is exceeded for extended
periods of time.

15

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

At a minimum, the following performance counters should be moni-
tored for Microsoft ASP.NET applications:

• Web Service\Current Connections

• ASP.NET\Request Execution Time

• ASP.NET\Request Queued

• ASP.NET\Request Wait Time

• ASP.NET\Worker Process Restarts

• ASP.NET\Application Restarts

• ASP.NET\Request Rejected

• ASP.NET Applications\Requests in Application Queue

ASP.NET\Application Restarts
The number of application restarts. Recreating the application domain
and recompiling pages takes time, therefore unforeseen application
restarts should be investigated. The application domain is unloaded
when one of the following occurs:

• Modification of machine.config, web.config, or global.asax.

• Modification of the application’s bin directory or its contents.

• When the number of compilations (ASPX, ASCX, or ASAX) exceeds
 the limit specified by <compilation numRecompilesBeforeAppRe
 start=/>.

• Modification of the physical path of a virtual directory.

• Modification of the code-access security policy.

• The Web service is restarted.

Threshold: 0 (in a perfect world, the application domain will
survive for the life of the process. Excessive values should be
investigated.)

ASP.NET\Requests Rejected
The number of requests rejected. Requests are rejected when
one of the queue limits is exceeded (see description of
Requests Queued). Requests can be rejected for a number of
reasons. Backend latency, such as that caused by a slow SQL
server, is often preceded by a sudden increase in the number
of pipeline instances and a decrease in CPU utilization and
Requests/sec. A server may be overwhelmed during times
of heavy load due to processor or memory constraints that
ultimately result in the rejection of requests

Threshold: 0. (the value of this counter should be 0.
Values greater should be investigated.)

Note: requests are rejected when the Requests Current counter
exceeds the Request Queue Limit, when this limit is exceeded,
requests will be rejected with a 503 status code and the
message “Server is too busy.” If a request is rejected for this
reason, it will never reach managed code, and error handlers
will not be notified. Normally this is only an issue when the
server is under a very heavy load, although a “burst” load every
hour might also cause this

ASP.NET\Worker Process Restarts
The number of w3wp process restarts.

Threshold: 1. Process restarts are expensive and
undesirable. Values are dependent upon the process model

 configuration settings, as well as unforeseen access
violations, memory leaks, and deadlocks. Requests will be

 lost if an access violation or deadlock occurs. If process
 model settings are used to preemptively recycle the process,

it will be necessary to set an appropriate threshold.

16

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

ASP.NET\Requests Queued.
The number of requests currently queued. When running on IIS 6.0,
there is a queue where requests are posted to the managed Thread
Pool from native code, and a queue for each virtual directory. This
counter includes requests in all queues. On IIS 6.0 it increases when
there are incoming requests and a shortage of worker threads.

By itself, this counter is not a clear indicator of performance issues,
 nor can it be used to determine when requests will be rejected.

See other counters Requests Current, Requests in Application
 Queue and Requests Rejected.

Threshold: Depends on business application requirements.

ASP.NET Applications\Requests in Application Queue
The number of requests in the application request queue (see
description of Requests Queued above). In addition to Requests
Current, Requests in Application Queue provides a warning for when
requests will be rejected. If there are only a couple virtual directories,
increasing the default appRequestQueueLimit to 200 or 300 may
be suitable, especially for slow applications under heavy load.

 Threshold: Depends on business requirements.

17

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

18

Response Time and Latency

You can measure response time (and latency) from a client and server
perspective. From the client perspective, you can measure the time
taken for the first byte of the response to reach the client and the time
taken for the last time to reach the client.

The latency here includes network latency (the time taken for the
request and response to travel over the network) and server latency
(the time taken for the server to process the request.) You measure
time to first byte (TTFB) and time to last byte (TTLB) by using Argent
Sentry to open a web page and record the time taken to load the page
– the response time can be used to trigger alerts and also can be
stored into the database for trending purposes.

The above chart shows the average page load time for a web site to
load the home page and as shown here the average appears to be
around 100ms.

On the server-side, you measure the time taken by ASP.NET to
process a request by using the ASP.NET\Request Execution Time
performance counter – this can be tracked using Argent Guardian and
a Performance rule against the IIS server.

This data can be used to trigger alerts if the average request
execution time exceeds a value that is deemed to be
acceptable within the web applications parameters. Data can
also be captured using the Argent Predictor as shown above to
chart the value over time.

This data then can be correlated with the home page load time
to identify when the application is taking longer to load than
under normal conditions.

In this chart we have a Request Execution time of around 30ms
@ 10:40 this appeared to raise as to did the Request Wait Time
counter, if we look at the Page Response time on the previous
page it also increased from around 90ms to 130ms @ 10:40.

From these pieces of data we can see how long the client
and network processing time has taken by subtracting the

 Request Execution time from the Home Page Response
Time

130ms (Home Page Response Time) - 30ms (Request
Execution Time) = 100ms (client and network latency)

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

19

ASP.NET\Request Execution Time
The time taken to execute the last request (milliseconds). ASP.NET\
Request Execution Time is an instance counter, and very volatile.

Threshold: Depends on Business Application Requirements.
The value of this counter should be stable. Experience will help
set a threshold for a particular site. When the process model is

 enabled, the request execution time includes the time required to
write the response to the client, and therefore depends upon the

 bandwidth of the client’s connection.

ASP.NET\Request Wait Time
The amount of time (milliseconds) that the most recent request spent
waiting in the queue, or named pipe, that exists between inetinfo and
w3wp (see description of Requests Queued). This does not include any
time spent waiting in the application queues.

Threshold: 1000. The average request should spend 0 milliseconds
 waiting in the queue.

Throughput

To measure ASP.NET application throughput, use the following
counters:

ASP.NET Applications\Requests/Sec
The throughput of the ASP.NET application. It is one the primary
indicators that help you measure the cost of deploying your
system at the necessary capacity.

Threshold: Depends on your business requirements should
 have a baseline recorded during testing.

Web Service\ISAPI Extension Requests/sec
The rate of ISAPI extension requests that are simultaneously
being processed by the Web service. This counter is not
affected by the ASP.NET worker process.

Threshold: Depends on your business requirements should
 have a baseline recorded during testing.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

20

Building a model of a well running application by using a table similar
to the following will provide an application workload profile – this
can be used to determine what thresholds should be set and at what
values the application starts to perform badly.

Web Service\Current Connections

Processor\% Processor Time
System\Processor Queue Length
System\Context Switches/sec

Avg. Disk Queue Length
%Disk Time

Memory\Pages/sec
Memory\Available Mbytes

Network Interface\Bytes Total/sec

ASP.NET Applications\Requests/Sec
ASP.NET Applications\Requests in App Q
ASP.NET\Request Execution Time
ASP.NET\Request Wait Time

Argent Sentry Page Load Time (seconds)

Object Counter Test 1 Test 2 Set Threshold

Connections

CPU

Disk

Memory

Network

Application

Client

50

40
1
2000

3
35

2
500

125000

37
2
370ms
0ms

2

200

65
3
4000

5
60

8
300

370000

100
5
650ms
50ms

6

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

21

Monitoring the Windows Event Logs

It is critical to monitor the event log for messages from ASP.NET and
Microsoft Internet Information Server (IIS). ASP.NET writes messages to
the application log, for example, IIS writes messages to both the
application and/or system logs, for example, each time the w3wp
worker process reports itself unhealthy or crashes. It is quite easy to
use the Argent Data Consolidator that reads the application log and
filters out messages from ASP.NET and IIS, and fires an alert (sends
e-mail or SMS) if necessary.

WWW Service Events
These are generated by the part of the World Wide Web Publishing
Service (WWW service) that handles internal administration of the
W3SVC. The WWW service events are listed in the System log, with
the source name W3SVC.

WWW Service Worker Process Events
The WWW service worker process generates, such as authentication
and authorization, application problems, memory monitoring, and so
on. These events are listed in the Application log with the source name
W3SVC-WP.

ASP.NET Events
The ASP.NET process generates events, such as application problems,
thread, and exception monitoring, and so on. These events are listed in
the Application log with the source name ASP.NET (Version).

HTTP Events
The HTTP process generates events, such as authentication
and authorization, application problems, memory monitoring,
and so on. These events are listed in the System log with the
source name Http.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

22

Adding ASP.NET Startup and Shutdown Application Events

By altering the root web.config you can get an event for every
application shutdown and start up. This is a good way to get more
detailed information on why the application shut down.

Open up the root web.config, (located in the %WinDir%\Microsoft.NET\
Framework\v2.0.50727\CONFIG directory,) locate the healthMonitor-
ing.rules subkey and add the following:

<add name=”Application Lifetime Events Default”

 eventName=”Application Lifetime Events”

provider=”EventLogProvider” profile=”Default” minInstances=”1”

maxLimit=”Infinite” minInterval=”00:01:00” custom=”” />

Now when the application exited for an application-specific reason
you’ll get an event like this:

Event code: 1002

Event message: Application is shutting down. Reason: Configuration changed.

Event time: 2/14/2008 10:00:41 AM

Event time (UTC): 2/14/2008 9:00:41 AM

Event ID: a1314c10a0c84222ae2d870d85308304

Event sequence: 18

Event occurrence: 1

Event detail code: 50004

Application information:

 Application domain: /LM/w3svc/1/ROOT/Test-1-128474532435626182

 Trust level: Full

 Application Virtual Path: /Test

 Application Path: c:\inetpub\wwwroot\Test\

 Machine name: TEST

As you can see the application shut down because the configuration
changed. Note that you won’t get an event if you manually kill the
entire application pool in IIS manager, or similar. One thing that you will
get, however, is the following event each and every time the
application starts up again:

Event code: 1001

Event message: Application is starting.

Event time: 2/14/2008 10:00:47 AM

Event time (UTC): 2/14/2008 9:00:47 AM

Event ID: 1f41fd3b17764330ac61804094b0abf0

Event sequence: 1

Event occurrence: 1

Event detail code: 0

Application information:

 Application domain: /LM/w3svc/1/ROOT/Test-1-128474532435626182

 Trust level: Full

 Application Virtual Path: /Test

 Application Path: c:\inetpub\wwwroot\Test\

 Machine name: TEST

So even if the application shut down for a reason that didn’t
generate an event, (IISReset, idle server, etc.) you’ll at least see
that for some reason it had to start up again.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

23

Monitoring the W3C Log

First, enable W3C logging for IIS through the Internet Information
Services (IIS) Manager.

This log can be configured to include various data about the requests,
such as the URI, status code etc.

Example W3C Log File

#Fields: date time s-sitename s-ip cs-method cs-uri-stem cs-uri-query s-port cs-username c-ip cs(User-Agent) sc-status sc-substatus
sc-win32-status

2010-01-27 00:00:08 W3SVC1783120911 127.0.0.1 GET /HTML/main.htm - 8282 - 127.0.0.1 Sentinel 200 0 0

2010-01-27 00:00:08 W3SVC1783120911 127.0.0.1 GET /HTML/main.htm - 8282 - 127.0.0.1 Sentinel 200 0 0

Scan the log for error codes such as 404 Not Found, and take action
to correct links, if necessary.

On IIS 6.0, the substatus code is included in the log and is useful for
debugging. IIS uses substatus codes to indentify specific problems.

For example, 404.2 indicate that the ISAPI extension handling the
request is locked down.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

24

W3C Logs are located in a directory under the following folder C:\
WINDOWS\system32\LogFiles.

However a directory is used for logging each website separately and is
named by using the web site identifier.

So the directory with the W3C logs for the ImageViewer website would
be.

 C:\WINDOWS\system32\LogFiles\W3SVC1783120911

In the W3C Logging Fields dialog box, select one or more of the
following options:

Date (date): the date on which the request occurred.

Time (time): the time, in (UTC), at which the request occurred.

Client IP Address (c-ip): the IP address of the client that made the request.

User Name (cs-username): the authenticated user. Anonymous users are indicated by a hyphen.

Service Name (s-sitename): the site instance number that fulfilled the request.

Server Name (s-computername): the name of the server on which the log files entry was generated.

Server IP Address (s-ip): the IP of the server on which the log file entry was generated.

Server Port (s-port): the server port number that is configured for the service.

Method (cs-method): the requested action, for example, a GET method.

URI Stem (cs-uri-stem): the Universal Resource Identifier, or target, of the action.

URI Query (cs-uri-query): the query, if any, that the client was trying to perform. A Universal Resource
 Identifier (URI) query is necessary only for dynamic pages.

Protocol Status (sc-status): the HTTP or FTP status code.

HTTP Status Codes

Informational

Successful

Redirection

Client Error

Server Error

Status Code Condition

100

200

300

400

500

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

25

Cannot resolve the request.

Unauthorized.

Forbidden.

File or directory not found.

HTTP verb used to access this page is not allowed.

Client browser does not accept the MIME type of requested page.

Initial proxy authentication required by the Web server.

Precondition set by the client failed when evaluated on the Web server.

Request entity too large.

Request URL is too large and therefore unacceptable on the Web server.

Unsupported media type.

Requested range not satisfiable

Expectation failed.

Locked error.

HTTP 400 - Class Client Error Codes Returned by IIS

Status Code Condition

400

401.x

403.x

404.x

405

406

407

412

413

414

415

416

417

423

Protocol Sub-status (sc-substatus): the HTTP or FTP substatus
code.

Win32 Status (sc-win32-status): the Windows status code.

Bytes Sent (sc-bytes): the number of bytes that the server sent.

Bytes Received (cs-bytes): the number of bytes that the server received.

Time Taken (time-taken): the length of time that the action took in milliseconds.

Protocol Version (cs-version): the protocol version, HTTP or FTP, that the client used.

Host (cs-host): the host name, if any.

User Agent (cs(UserAgent)): the browser type that the client used.

Cookie (cs(Cookie)): the content of the cookie sent or received, if any.

Referer (cs(Referer)): the site that the user last visited. This site provided a link to the current site.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

26

Monitoring the HTTPERR Log

Malformed or bad requests and requests that fail to be served by an
Application Pool are logged to the HTTPERR log by HTTP.SYS, the
kernel-mode driver for handling HTTP requests. Each entry includes
the URL and a brief description of the error.

W3C Logs are located in a directory under the following folder C:\
WINDOWS\system32\LogFiles\HTTPERR.

The following sample lines are from an HTTP API error log:

Types of errors that the HTTP API logs
The HTTP API logs error responses to clients, connection time-outs,
orphaned requests, rejected requests and dropped connections that
are handled incorrectly.

The following list identifies the types of errors that the HTTP API logs:

• Responses to clients The HTTP API sends an error response to
 a client, for example, a 400 error that is caused by a parse error in

 the last received request. After the HTTP API sends the error
 response, it terminates the connection.

• Connection time-outs The HTTP API times out a connection. If
 a request is pending when the connection times out, the request
 is used to provide more information about the connection in the

 error log.

• Orphaned requests A user-mode process quits unexpectedly
 while there are still queued requests that are routed to that
 process. The HTTP API logs the orphaned requests in the error log.

• Rejected requests. Requests are rejected by HTTP.SYS when
 the kernel request queue is exceeded, and when the
 application is taken offline by the Rapid Fail Protection feature.

 When the first issue occurs, the URL is logged with the message
 QueueFull, and when the second occurs, the message is App

 Offline. By default, the kernel request queue is set to 1,000, and
 can be configured on the Application Pool Properties page in IIS
 Manager. It is recommended to increase this to 5,000 for a busy
 site, since the kernel request queue could easily surpass 1,000 if
 an Application Pool crashes while a site is under a very high load.

2002-07-05 18:45:09 172.31.77.6 2094 172.31.77.6 80 HTTP/1.1 GET /qos/1kbfile.txt 503 – ConnLimit 2002-07-05 19:51:59 127.0.0.1 2780 127.0.0.1 80
HTTP/1.1 GET /ThisIsMyUrl.htm 400 – Hostname 2002-07-05 19:53:00 127.0.0.1 2894 127.0.0.1 80 HTTP/2.0 GET / 505 - Version_N/S 2002-07-05 20:06:01
172.31.77.6 64388 127.0.0.1 80 - - - - - Timer_MinBytesPerSecond

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

27

• Lost Requests due to a worker process crash or hang. When
 this occurs the URL will be logged with the message,
 Connection_Abandoned_By_AppPool, for each in-flight
 request. An in-flight request is one that was sent to a worker

 process for processing, but did not complete before the crash
 or hang.

Format of the HTTP API error logs
Generally, HTTP API error log files have the same format as W3C error
logs, except that HTTP API error log files do not contain column
headings. Each line of an HTTP API error log records one error. The
fields appear in a specific order. A single space character separates
each field from the previous field. The following table identifies the
fields and the order of the fields in an error log record.

The Date field follows the W3C format. This field is based on Coordinated Universal Time (UTC). The Date
field is always ten characters in the form of YYYY-MM-DD. For example, May 1, 2003 is expressed as
2003-05-01.

The Time field follows the W3C format. This field is based on UTC. The time field is always eight characters
in the form of MM:HH:SS. For example, 5:30 PM (UTC) is expressed as 17:30:00.

The IP address of the affected client. The value in this field can be either an IPv4 address or an IPv6
address. If the client IP address is an IPv6 address, the ScopeId field is also included in the address.

The port number for the affected client.

The IP address of the affected server. The value in this field can be either an IPv4 address or an IPv6
address. If the server IP address is an IPv6 address, the ScopeId field is also included in the address.

The port number of the affected server.

The version of the protocol that is being used.

If the connection has not been parsed sufficiently to determine the protocol version, a hyphen (0x002D) is
used as a placeholder for the empty field.

If either the major version number or the minor version number that is parsed is greater than or equal to 10,
the version is logged as HTTP/?.?.

The verb state that the last request that is parsed passes. Unknown verbs are included, but any verb that is
more than 255 bytes is truncated to this length. If a verb is not available, a hyphen (0x002D) is used as a
placeholder for the empty field.

Field Description

Date

Time

Client IP Address

Client Port

Server IP Address

Server Port

Protocol Version

Verb

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

28

Field Description

The URL and any query that is associated with it are logged as one field that is separated by a question
mark (0x3F). This field is truncated at its length limit of 4096 bytes.

If this URL has been parsed (“cooked”), it is logged with local code page conversion, and is treated as a
Unicode field.

If this URL has not been parsed (“cooked”) at the time of logging, it is copied exactly, without any Unicode
conversion.

If the HTTP API cannot parse this URL, a hyphen (0x002D) is used as a placeholder for the empty field.

The protocol status cannot be greater than 999.

If the protocol status of the response to a request is available, it is logged in this field.

If the protocol status is not available, a hyphen (0x002D) is used as a placeholder for the empty field.

Not used in this version of the HTTP API. A placeholder hyphen (0x002D) always appears in this field.

This field contains a string that identifies the type of error that is being logged. This field is never left empty.

This the request queue name.

CookedURL +
Query

Protocol Status

SiteId

Reason Phrase

Queue Name

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

29

Monitoring Web Site and Application Pools

A System WMI rule (See Appendix A) can be used to check the status
of the Application Pools – if the state of the pools looks like the
following then the rule will generate an Alert on the stopped Pool

Rule Broken Time: 12 Aug 2010 16:50:52

image Status = NOT UP
Argent_Web_Application_Pool Status = UP
BusinessManagerPool Status = UP
DefaultAppPool Status = UP
ReportServer Status = UP

A System WMI rule (See Appendix A) can be used to check the status
of the Web Sites – if the state of the Web Sites looks like the following
then the rule will generate an Alert for the Web Site that is stopped

Rule Broken Time: 12 Aug 2010 16:53:44

IMAGE(W3SVC/1233961813) is NOT ONLINE
HealthMonitoringExample(W3SVC/1081038790) is ONLINE
SmallBus(W3SVC/1340101560) is ONLINE
Daughter(W3SVC/1426852021) is ONLINE
WebService(W3SVC/1688268109) is ONLINE
ImageViewer(W3SVC/1783120911) is ONLINE

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

30

Appendix A (Application Pool
State System WMI Rule)
Const numspace = “30”

Call enumAppPools(TargetServer)

‘ This will enumerate the app pools

Sub enumAppPools(TargetServer)
On Error Resume Next

Dim apool,obj
set obj = GetObject(“IIS://” & TargetServer & “/W3SVC/apppools”)

For each apool in obj
 Call apppoolStatus(TargetServer,apool.name)
Next

set obj = nothing
End Sub

‘ This will get the status of the app pool

Function apppoolStatus(TargetServer,apppool)
Dim obj
set obj = GetObject(“IIS://” & TargetServer & “/W3SVC/apppools/” & apppool)

if obj.apppoolstate <> 2 then
FireAlert apppool & space(numspace-(len(apppool))) & “ Status = NOT UP”, apppool
Else
WriteStatus apppool & space(numspace-(len(apppool))) & “ Status = UP”
End If

set obj = nothing
End Function

Set objSWems = GetObject(“winmgmts:” & “{impersonationLevel=impersonate}!\\” &
TargetServer & “\root\MicrosoftIISv2”)
Set objwebstate = objSWems.ExecQuery(“Select * From IIsWebServer”)

For Each obj in objwebstate

 Set objwebname = objSWems.ExecQuery(“Select * From IIsWebServerSetting
where name=’” & obj.name & “’”)

For Each objs in objwebname

 WebsiteName = objs.servercomment
Next

If obj.serverstate = 4 then

 FireAlert WebSiteName & “(“ & obj.name & “) is NOT ONLINE”, obj.
name
Else
 WriteStatus WebSiteName & “(“ & obj.name & “) is ONLINE”
End If

Next

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

Appendix A (Web Site State
System WMI Rule)
Set objSWems = GetObject(“winmgmts:” & “{impersonationLevel=impersonate}!\\” &
TargetServer & “\root\MicrosoftIISv2”)
Set objwebstate = objSWems.ExecQuery(“Select * From IIsWebServer”)

For Each obj in objwebstate

\Set objwebname = objSWems.ExecQuery(“Select * From IIsWebServerSetting where
name=’” & obj.name & “’”)

For Each objs in objwebname

 WebsiteName = objs.servercomment
Next

If obj.serverstate = 4 then

 FireAlert WebSiteName & “(“ & obj.name & “) is NOT ONLINE”, obj.
name
Else
 WriteStatus WebSiteName & “(“ & obj.name & “) is ONLINE”
End If

Next

31

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

32

Appendix B
(Performance Counter Details)

ASP.NET Applications Counters

The performance counters in this category are reset to 0 when either the
application domain or Web service is restarted.

• Cache Total Entries. The current number of entries in the cache
 (both User and Internal). Internally, ASP.NET uses the cache to store

 objects that are expensive to create, including configuration objects,
 preserved assembly entries, paths mapped by the MapPath
 method, and in-process session state objects.

 Note: The “Cache Total” family of performance counters is useful
 for diagnosing issues with in-process session state. Storing too
 many objects in the cache is often the cause of memory leaks.

• Cache Total Hit Ratio. The total hit-to-miss ratio of all cache
 requests (both user and internal).

• Cache Total Turnover Rate. The number of additions and
 removals to the cache per second (both user and internal). A
 high turnover rate indicates that items are being quickly added
 and removed, which can be expensive.

• Cache API Entries. The number of entries currently in the
 user cache.

• Cache API Hit Ratio. The total hit-to-miss ratio of User
 Cache requests.

• Cache API Turnover Rate. The number of additions and removals
 to the user cache per second. A high turnover rate indicates
 that items are being quickly added and removed, which can be

 expensive.

• Output Cache Entries. The number of entries currently in
 the Output Cache.

• Output Cache Hit Ratio. The total hit-to-miss ratio of Output
 Cache requests.

• Output Cache Turnover Rate. The number of additions and
 removals to the output cache per second. A high turnover rate
 indicates that items are being quickly added and removed, which
 can be expensive.

• Pipeline Instance Count. The number of active pipeline
 instances. Only one thread of execution can be running within
 a pipeline instance, so this number gives the maximum
 number of concurrent requests that are being processed for a
 given application. The number of pipeline instances should
 be steady. Sudden increases are indicative of backend latency
 (see the description of Requests Rejected above).

• Compilations Total. The number of ASAX, ASCX, ASHX, ASPX,
 or ASMX files that have been compiled. This is the number
 of files compiled, not the number of generated assemblies.
 Assemblies are preserved to disk and reused until either
 the create time, last write time, or length of a file dependency
 changes. The dependencies of an ASPX page include global.
 asax, web.config, machine.config, dependent assemblies in
 the bin folder, and ASCX files referenced by the page. If you
 restart the application without modifying any of the file
 dependencies, the preserved assembly will be reloaded
 without requiring any compilation. This performance counter
 will increment only when a file is initially parsed and compiled
 into an assembly.

 By default, batch compilation is enabled, however, this counter
 will increment once for each file that is parsed and compiled
 into an assembly, regardless of how many assemblies are
 created.

• Errors During Preprocessing. The total number of
 configuration and parsing errors. This counter is incremented
 each time a configuration error or parsing error occurs.
 Even though configuration errors are cached, the counter
 increments each time the error occurs.

 Note: Do not rely solely upon the “Errors” performance
 counters to determine whether the server is healthy. They are
 reset to zero when the AppDomain is unloaded. They
 can, however, be used to dig deeper into a specific issue. In
 general, use the Application_Error event in order to alert
 administrators to problems.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

33

• Errors During Compilation. The total number of compilation
 errors. The response is cached, and this counter increments
 only once until recompilation is forced by a file change. Implement

 custom error handling to raise an event.

• Errors During Execution. The total number of run-time errors.

• Errors Unhandled During Execution. The total number of
 unhandled exceptions at run time. This does not include the following:

 a. Errors cleared by an event handler (for example, by
 Page_Error or Application_Error).

 b. Errors handled by a redirect page.

 c. Errors that occur within a try/catch block.

• Errors Unhandled During Execution/sec. The total number of
 unhandled exceptions per second at run time.

• Errors Total. The sum of Errors During Preprocessing, Errors During
 Compilation, and Errors During Execution.

• Errors Total/sec. The total of Errors During Preprocessing, Errors
 During Compilation, and Errors During Execution per second.

• Requests Executing. The number of requests currently executing.
 This counter is incremented when the HttpRuntime begins to

 process the request and is decremented after the HttpRuntime
 finishes the request.

 • Requests In Application Queue. The number of requests in the
 application request queue (see description of Requests Queued

 above). In addition to Requests Current, Requests in Application
 Queue provides a warning for when requests will be rejected. If
 there are only a couple virtual directories, increasing the default
 appRequestQueueLimit to 200 or 300 may be suitable, especially
 for slow applications under heavy load.

• Requests Not Found. The number of requests for resources not
 found.

• Requests Not Authorized. The number of request failed due
 to unauthorized access.

• Requests Timed Out. The number of requests that have timed out.

• Requests Succeeded. The number of requests that have executed
 successfully.

• Requests Total. The number of requests since the application was
 started.

• Requests/Sec. The number of requests executed per second.
 I prefer “Web Service\ISAPI Extension Requests/sec” because it is

 not affected by application restarts.

• Virtual Bytes. The current size, in bytes, of the virtual address
 space for this process.

 The virtual address space limit of a user mode process is 2 GB,
 unless 3 GB address space is enabled by using the /3GB
 switch in boot.ini. Performance degrades as this limit is
 approached, and typically results in a process or system crash.
 The address space becomes fragmented as the 2 GB or 3 GB
 limit is approached, and so I recommend a conservative
 threshold of 1.4 or 2.4 GB, respectively. If you’re running into
 issues here, you will see System.OutOfMemoryException
 being thrown, and this may or may not crash the process.

 When running on IIS 6.0, a virtual memory limit can be set in
 IIS Manager. However, setting this improperly can cause
 problems for ASP.NET. ASP.NET expunges items from the
 cache to avoid exceeding the Private Bytes limit, but the
 algorithm uses Private Bytes and the Private Bytes limit in
 this determination. It does not monitor Virtual Bytes or the
 Virtual Bytes limit. Given that the difference between Virtual
 Bytes and Private Bytes is typically no more than 600 MB,
 you could set the Virtual Bytes limit to a value 600 MB larger
 than the Private Bytes limit if you are concerned about the
 possibility of virtual memory leaks or fragmentation. If this is
 desirable, set a limit for Maximum virtual memory
 (in megabytes), found on the Recycling tab for the
 Properties of the application pool.

Threshold: 600 MB less than the size of the virtual
address space; either 1.4 or 2.4 GB.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

34

Web Service Counters
• Current Connections. A threshold for this counter is dependent

 upon many variables, such as the type of requests (ISAPI, CGI,
 static HTML, and so on), CPU utilization, and so on. A threshold

 should be developed through experience.

Set to an acceptable number of sessions suitable for the monitored
 applications.

• Total Method Requests/sec. Used primarily as a metric for
 diagnosing performance issues. It can be interesting to compare this

 with “ASP.NET Applications\Requests/sec” and
 “Web Service\ISAPI Extension Requests/sec” in order to see the
 percentage of static pages served versus pages rendered by

 aspnet_isapi.dll.

• ISAPI Extension Requests/sec. Used primarily as a metric for
 diagnosing performance issues. It can be interesting to compare

 this with “ASP.NET Applications\Requests/sec” and “Web Service\
 Total Method Requests/sec.” Note that this includes requests to all
 ISAPI extensions, not just aspnet_isapi.dll.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

35

Appendix C
(HTTP API Reason Phrases)

Reason Phrase Description

A service unavailable error occurred (an HTTP error 503). The service is not available because
application errors caused the application to be taken offline.

A service unavailable error occurred (an HTTP error 503). The service is not available because the
application pool process is too busy to handle the request.

A service unavailable error occurred (an HTTP error 503). The service is not available because the
application shut down automatically in response to administrator policy.

A parse error occurred while processing a request.

A worker process from the application pool has quit unexpectedly or orphaned a pending request by
closing its handle.

A worker process from the application pool has quit unexpectedly or orphaned a pending request by
closing its handle. Specific to Windows Vista and Windows Server 2008.

The connection between the client and the server was closed before the server could send its final
response packet. The most common cause of this behavior is that the client prematurely closes its
connection to the server.

The list of dropped connections between clients and the server is full. Specific to Windows Vista and
Windows Server 2008.

A service unavailable error occurred (an HTTP error 503). The service is not available because the
site level connection limit has been reached or exceeded.

The kernel NonPagedPool memory has dropped below 20MB and http.sys has stopped receiving
new connections

A service unavailable error occurred (an HTTP error 503). The service is not available because an
administrator has taken the application offline.

An entity exceeded the maximum size that is permitted.

A field length limit was exceeded.

A forbidden element or sequence was encountered while parsing.

A parse error occurred in a header.

A parse error occurred while processing a Hostname.

An internal server error occurred (an HTTP error 500).

An illegal carriage return or line feed occurred.

A required length value was missing.

A service unavailable error occurred (an HTTP error 503). The service is not available because an
internal error (such as a memory allocation failure) occurred.

A not-implemented error occurred (an HTTP error 501), or a service unavailable error occurred
(an HTTP error 503) because of an unknown transfer encoding.

AppOffline

AppPoolTimer

AppShutdown

BadRequest

Connection_Abandoned_
By_AppPool

Connection_Abandoned_
By_ReqQueue

Connection_Dropped

Connection_Dropped_
List_Full

ConnLimit

Connections_Refused

Disabled

EntityTooLarge

FieldLength

Forbidden

Header

Hostname

Internal

Invalid_CR/LF

LengthRequired

N/A

N/I

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAMonitoring IIS and ASP.NET based Applications

Windows 2003 Server Security Auditing using
Argent Data Consolidator

with Argent
Monitoring IIS and
ASP.NET based Applications

36

Reason Phrase Description

A parse error occurred while processing a number.

A required precondition was missing.

A service unavailable error occurred (an HTTP error 503). The service is not available because the
application request queue is full.

A request length limit was exceeded.

The connection expired because a request waited too long in an application pool queue for a server
application to dequeue and process it. This timeout duration is ConnectionTimeout. By default, this
value is set to two minutes.

The connection expired and remains idle. The default ConnectionTimeout duration is two minutes.

The connection expired before the request entity body arrived. When it is clear that a request has
an entity body, the HTTP API turns on the Timer_EntityBody timer. Initially, the limit of this timer
is set to the ConnectionTimeout value (typically 2 minutes). Each time another data indication is
received on this request, the HTTP API resets the timer to give the connection two more minutes (or
whatever is specified in ConnectionTimeout).

The connection expired because the header parsing for a request took more time than the default
limit of two minutes.

The connection expired because the client was not receiving a response at a reasonable speed.
The response send rate was slower than the default of 240 bytes/sec.

The connection expired because a request waited too long in an application pool queue for a server
application to dequeue. This timeout duration is ConnectionTimeout. By default, this value is set to
two minutes. Specific to Windows Vista and Windows Server 2008.

Reserved. Not currently used.

A parse error occurred while processing a URL.

A URL exceeded the maximum permitted size.

A parse error occurred while processing a verb.

A version-not-supported error occurred (an HTTP error 505).

Number

Precondition

QueueFull

RequestLength

Timer_AppPool

Timer_ConnectionIdle

Timer_EntityBody

Timer_HeaderWait

Timer_MinBytesPerSec-

ond

Timer_ReqQueue

Timer_Response

URL

URL_Length

Verb

Version_N/S

Note: ArgSoft Intellectual Property Holdings Limited has created this White Paper for informational purposes only. ArgSoft Intellectual Property Holdings Limited makes no

warranties, express or implied, in this document. The information contained in this document is subject to change without notice. ArgSoft Intellectual Property Holdings Limited

shall not be liable for any technical or editorial errors, or omissions contained in this document, nor for incidental, indirect or consequential damages resulting from the

furnishing, performance, or use of the material contained in this document, or the document itself. All views expressed are opinions of ArgSoft Intellectual Property Holdings

Limited. All trademarks are the property of their respective owners.

