
© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

..

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIA

Unix Monitoring
Overview

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

Contents

UNIX Monitoring Using Argent Extended Technology							 3

Architecture												 4

Architecture – Agent-less 										 5

Architecture – Agent-based										 5

Argent Guardian											 6

Argent Guardian – Rules										 7

Argent Guardian – “Alert” Rules									 8

Argent Guardian – “Alert” Rules, Firing Events For Individual Objects				 12

Argent Guardian – “Predictor” Rules									 18

Argent Guardian – Combining “Alert” And “Predictor” Rules						 23

Argent Data Consolidator										 30

Appendix A: UNIXSSH.INI									 	 32	 	

						

For more information on whether customers need to deploy any type of remote engine, please contact Argent Technical Service at
at http://help.Argent.com.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

3

UNIX Monitoring Using Argent
Extended Technology

Argent XT is a comprehensive monitoring and alerting solution that can
be utilized to manage the UNIX environment.

Argent XT provides a suite of products, as well as flexible architecture
options for varied network environments and security requirements.

Argent Guardian provides the ability to monitor all metrics on a UNIX
server, through Rules written as fully customizable shell scripts.

Argent Predictor is used to create Graphs and Reports on perfor-
mance data that is saved through running the Argent Guardian Rules.

Argent Data Consolidator is a comprehensive solution for managing
log files, whether they be ASCII files, syslog messages, etc.

Argent SNMP Monitor can be used to create SNMP based rules
where SNMP is enabled on a UNIX server.

Argent Monitor for VMware can use the same type of UNIX shell
script Rules for customized monitoring of VMware ESX servers.

This manual is provided as an introduction to monitoring UNIX with
Argent XT, and the following knowledge is assumed:

• Working knowledge of UNIX systems

• Basic understanding of Bourne Shell scripting

• Basic understanding of XML

• Familiarity with Argent XT concepts

All of Argent’s documentation can be found online at:
http://help.Argent.com

Argent XT offers SEVEN options for monitoring UNIX systems.

• Telnet

• SSH

• SSH Relay Agent

• UNIX Secure Agent

• UNIX Shell Script Agent

• UNIX Daemon

• UNIX Rule Engine

Each of these options provides different features and benefits,
depending on your security requirements, network architec-
ture, etc.

Broadly, the Argent XT architecture options can be divided into
two categories: agent-less and agent-based
monitoring.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

4

Architecture

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

5

Architecture – Agent-less

Agent-less monitoring is the easiest to setup as it requires nothing to
be installed on the UNIX servers that are going to be monitored. All
Rules (shell scripts) are stored on the main Argent XT Windows server
and are executed remotely via a Telnet or SSH session.

Telnet
A Windows Monitoring Engine executes the Rule through a Telnet
session, and the information is read back for centralized alerting and
reporting.

Telnet communication, of course, is completely plain-text, making it
not secure.

SSH
SSH, on the other hand, is completely encrypted from end to end,
making it secure.

This is achieved from the Argent XT Windows server by utilizing the
PuTTy tools PSCP and PLINK.

For a detailed explanation of the steps, see: Appendix A: UNIXSSH.INI

Architecture – Agent-based

SSH Relay Agent
The SSH Relay Agent shifts the SSH connection workload
from a Windows Monitoring Engine to a UNIX machine, which
generally make SSH connections more efficient.

This requires installing the SSH Relay Agent to a dedicated
UNIX server that will monitor the other UNIX servers.

A Windows Monitoring Engine sends the Rule to the SSH Relay
Agent, which then makes the connection to the monitored
servers via SSH, executes the Rule, then sends the information
back.

As an alternative to Telnet and SSH, you can install a local
UNIX monitoring agent on the UNIX systems you wish to
monitor.

UNIX Secure Agent

The UNIX Secure Agent is a binary executable that is installed
on the servers to be monitored.

It is started via the inetd/xinetd super daemon and listens on a
dedicated secure channel.

Rules are sent from the Windows Monitoring Engine, executed
locally and the information sent back.

UNIX Shell Script Agent

The UNIX Shell Script Agent is just that -- a shell script that is
installed on the servers to be monitored.

Similar to the UNIX Secure Agent, it is started via inetd/xinetd
and listens on a secure channel.

Being just a shell script allows for user customization and for
use on systems where a UNIX Secure Agent binary does not
yet exist.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

6

UNIX Daemon
The UNIX Daemon is similar to the UNIX Secure Agent, but does not
require inetd/xinetd.

It is installed as its own daemon, listening on a secure channel for
Rules that are sent from the Windows Monitoring Engine.

UNIX Rule Engine

The UNIX Rule Engine is similar in concept to the Argent Mother/
Daughter architecture.

It retrieves its marching orders from the main Argent server, makes
SSH connections to the monitored servers, and sends back the results
to the main Argent server.

This provides additional fault tolerance, as well as removing the con-
nection load from a Windows Monitoring Engine. Since each UNIX Rule
Engine initiates the connection to the main Argent server, firewall
configuration is also simplified, since you only have to open one port.

For more detailed information on the seven options, see also:
http://help.Argent.com/#unix_seven

Argent Guardian

The Argent Guardian is the world’s most scalable monitor-
ing solution for all Windows, UNIX, and iSeries applications,
monitoring the health and performance of all critical business
applications through a unique architecture - Argent provides
the same level of monitoring with or without agents, and there
is no cost difference.

Applications running on UNIX servers are monitored using a
script-based system that is both flexible and popular with UNIX
and Linux administrators.

Unix Rules exist for all the popular platforms, including:

• Solaris

• HP-UX

• AIX

• SCO

• Linux

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

7

Argent Guardian - Rules

Argent Guardian comes preinstalled with many Rules for monitor-
ing the baseline metrics (CPU utilization, memory, etc) for the various
flavors of UNIX.

The existing Rules for UNIX monitoring in Argent Guardian can be
accessed via Monitoring > UNIX Rules > UNIX Flavor

All Rules are organized via their respective flavor of UNIX, and are
further divided between ‘Alert’ Rules and ‘Predictor’ Rules.

By default, ‘Alert’ Rules are written to trigger Alerts when a certain
condition has been met – they do not save any data for reporting. This
is done via the ‘Predictor’ Rules, and these are distinguished by the
“_PDT_” prefix.

Example:
SCP_AIX_DISK_SPACE_10 is an ‘Alert’ Rule that triggers Alerts when
Free Disk Space is less than 10%.

SCP_AIX_PDT_DISK_FREE is the equivalent Rule that saves the %
Free Disk Space metric to Argent Predictor for reporting, graphing,
trend analysis, etc.

See Also: http://help.Argent.com/#rul_ag_linux_mon

No matter which architectural options are chosen, all Rules for UNIX
monitoring are written in the same way – a Bourne shell script.

This allows for customization of existing Rules, as well as writing brand
new Rules or adapting existing scripts.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

8

Argent Guardian – “Alert” Rules

Below is an example ‘Alert’ Rule for monitoring Disk Free Space,
similar to the default SCP_LINUX_DISK_SPACE_10, but simplified for
readability.

Note that the actual logic of the Rule is entirely customizable – as long
as the output of the Rule conforms to the expected XML format, the
script can be tailored to suit your needs.

#!/bin/sh
Header information, etc....

STATUS=NOVAL

SUMMARY=NOVAL

COMMENT=NOVAL

xmlOut() - prints an entire XML output for a command script.
Used for The Argent Guardian rules that return a PASS/FAIL
status and summary and comment descriptions.

xmlOut()
{
xmlBegin

xmlStatus

xmlEnd

}

xmlBegin() - Prints out the definition of the XML format used to
send status data to The Argent Guardian.

xmlBegin()
{
cat <<!
<?xml version=”1.0”?>
<!DOCTYPE TAGResult
[
<!ELEMENT TAGResult (QEResult+)>
<!ELEMENT QEResult (status, summary, comment)>
<!ELEMENT status (#PCDATA)> <!-- (PASS | FAIL) -->
<!ELEMENT summary (#PCDATA) >
<!ELEMENT comment (#PCDATA) >
]>
<TAGResult>
!
} # End of xmlBegin()

xmlStatus() - Send a status block to The Argent Guardian. The
status should be ‘PASS’ or ‘FAIL’. The summary explains the result
and the comment is a generic description of the Unix rule.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

9

xmlStatus()
{
cat <<!
<QEResult>
<status>$STATUS</status>
<summary>$SUMMARY</summary>
<comment>$COMMENT</comment>
</QEResult>
!
} # End of xmlStatus()

xmlEnd() - Completes the XML data block.

xmlEnd()
{
cat <<!
</TAGResult>
!
} # End of xmlEnd()

############################# Main portion of script ##########################

Set the IFS variable, which is used by the read command to parse input.
We wish to read the input one line at a time.

IFS=’

Use the df command to get information about the filesystems.

DFCMD=”df -P”

#
The FREE_PCT variable defines the minimum percentage of free disk space
for each filesystem.

FREE_PCT=90

Assume the status of the rule is OK

STATUS=PASS

EXIT_CODE=0

SUMMARY=”All filesystems have at least ${FREE_PCT}% of their space free”

COMMENT=”Used ${DFCMD} to get File System capacities.”

Iterate through all the filesystems

for fs in `eval $DFCMD`; do

	 # FS is the actual filesystem, MNT is the mounted directory. Include
	 # an ‘x’ before the line in case the filesystem is blank.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

10

 FS=`echo $fs | awk ‘ { print $1 } ‘`

 MNT=`echo x$fs | awk ‘ { print $6 } ‘`

 # Skip the first line of DFCMD, which is the column headers

 if [“$FS” = “Filesystem”]; then

 continue

 fi

 # Derive the free space from the capacity used and compare it to
 # the threshold.

 CAPACITY=`echo $fs | awk ‘ { print $5 } ‘`

 CAPACITY=`echo $CAPACITY | sed ‘s/%//’`

 FREE_SPACE=`expr 100 - $CAPACITY`

 if [“$FREE_SPACE” -lt “$FREE_PCT”]; then

 # Update the summary string.

 if [$STATUS = “PASS”]; then

 SUMMARY=”These filesystems have less than ${FREE_PCT}% Free Space.”

 EXIT_CODE=1

 fi

 STATUS=FAIL

 SUMMARY=”${SUMMARY}
 $MNT: ${FREE_SPACE}% Free “

 fi

done

Report the findings back to The Argent Guardian

xmlOut

exit $EXIT_CODE

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

11

Running this Rule provides the following output which is read by the Argent Guardian:

<?xml version=”1.0”?>
<!DOCTYPE TAGResult
[
<!ELEMENT TAGResult (QEResult+)>
	 <!ELEMENT QEResult (status, summary, comment)>
		 <!ELEMENT status (#PCDATA)> <!-- (PASS | FAIL) -->
		 <!ELEMENT summary (#PCDATA) >
		 <!ELEMENT comment (#PCDATA) >
]>
<TAGResult>
	 <QEResult>
		 <status>FAIL</status>
		 <summary>These filesystems have less than 90% Free Space.
		 /: 64% Free
		 /boot: 87% Free </summary>
		 <comment>Used df -P to get File System capacities.</comment>
	 </QEResult>
</TAGResult>

This XML block is read back to the Argent Guardian, and the following Alerts are sent via the Argent
Alert Console.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

1212

Argent Guardian – “Alert” Rules, Firing
Events For Individual Objects

The Argent UNIX Rules are typically configured to fire a single event
for the condition as a whole - the entire Rule’s script is treated as a
boolean PASS or FAIL.

For example, take the bundled SCP_LINUX_DISK_SPACE_60. This
Rule is broken if any file system tested by the Rule’s script has less
than 60% free space.

But only a single event is fired for all the file systems that have less
than 60% free space. As a result, the condition won’t be corrected
unless all the file systems have more than 60% free space.

The internal mechanism to identify an event as the same ‘XT event’ is
to compare following fields:

• Node name

• Relator name

• Rule name

• Comparison string

In order to identify individual object, a new tag ‘COMPARE’ is added. In
previous file system sample Rule, the file system name should be used
for the COMPARE value.

The logic of the Rule is also changed to output multiple ‘QERESULT’
tags – one for each broken file system.

Also, the option ‘Fire Separate Events For Each Performance Instance’
should be checked.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

13

See Also: http://help.Argent.com/#Q716

#!/bin/sh

Header information, etc....

STATUS=NOVAL

SUMMARY=NOVAL

COMMENT=NOVAL

COMPARE=NOVAL

xmlBegin() - Prints out the definition of the XML format used to
send status data to The Argent Guardian.

xmlBegin()
{
 cat <<!
<?xml version=”1.0”?>
<!DOCTYPE TAGResult
[
<!ELEMENT TAGResult (QEResult+)>
 <!ELEMENT QEResult (status, summary, comment, compare)>
 <!ELEMENT status (#PCDATA)> <!-- (PASS | FAIL) -->
 <!ELEMENT summary (#PCDATA) >
 <!ELEMENT comment (#PCDATA) >
 <!ELEMENT compare (#PCDATA) >
]>
<TAGResult>
!
} # End of xmlBegin(

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

14

xmlStatus() - Send a status block to The Argent Guardian. The
status should be ‘PASS’ or ‘FAIL’. The summary explains the result
and the comment is a generic description of the Unix rule.

xmlStatus()
{
 cat <<!
 <QEResult>
 <status>$STATUS</status>
 <summary>$SUMMARY</summary>
 <comment>$COMMENT</comment>
 <compare>$COMPARE</compare>
 </QEResult>
!
} # End of xmlStatus()

xmlEnd() - Completes the XML data block.

xmlEnd()
{
 cat <<!
 </TAGResult>
!
} # End of xmlEnd()

############################# Main portion of script ##########################

Set the IFS variable, which is used by the read command to parse input.
We wish to read the input one line at a time.

IFS=’
‘
Use the df command to get information about the filesystems.

DFCMD=”df -P”

#
The FREE_PCT variable defines the minimum percentage of free disk space
for each filesystem.

FREE_PCT=90

Assume the status of the rule is OK

STATUS=PASS

EXIT_CODE=0

SUMMARY=”All filesystems have at least ${FREE_PCT}% of their space free”

COMMENT=”Used ${DFCMD} to get File System capacities.”

xmlBegin

Iterate through all the filesystems

for fs in `eval $DFCMD`; do

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

15

FS is the actual filesystem, MNT is the mounted directory. Include
an ‘x’ before the line in case the filesystem is blank.

FS=`echo $fs | awk ‘ { print $1 } ‘`

MNT=`echo x$fs | awk ‘ { print $6 } ‘`

Skip the first line of DFCMD, which is the column headers

if [“$FS” = “Filesystem”]; then

continue

fi

Derive the free space from the capacity used and compare it to
the threshold.

 CAPACITY=`echo $fs | awk ‘ { print $5 } ‘`

 CAPACITY=`echo $CAPACITY | sed ‘s/%//’`

 FREE_SPACE=`expr 100 - $CAPACITY`

 COMPARE=$MNT

 if [“$FREE_SPACE” -lt “$FREE_PCT”]; then

 # Update the summary string.

 SUMMARY=”File System $MNT (${FREE_SPACE}%) has less than ${FREE_PCT}% Free Space.”

 STATUS=FAIL

 EXIT_CODE=1

 xmlStatus
 fi

done

if [$STATUS = “PASS”]; then

xmlStatus

fi

Report the findings back to The Argent Guardian

xmlEnd

exit $EXIT_CODE

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

16

Notice the change in the output format, there are now multiple
‘QERESULT’ tags – one for each broken filesystem.

<?xml version=”1.0”?>
<!DOCTYPE TAGResult
[
<!ELEMENT TAGResult (QEResult+)>
	 <!ELEMENT QEResult (status, summary, comment, compare)>
		 <!ELEMENT status (#PCDATA)> <!-- (PASS | FAIL) -->
		 <!ELEMENT summary (#PCDATA) >
		 <!ELEMENT comment (#PCDATA) >
		 <!ELEMENT compare (#PCDATA) >
]>
<TAGResult>
	 <QEResult>
		 <status>FAIL</status>
		 <summary>File System / (64%) has less than 90% Free Space.</summary>
		 <comment>Used df -P to get File System capacities.</comment>
		 <compare>/</compare>
	 </QEResult>
	 <QEResult>
		 <status>FAIL</status>
		 <summary>File System /boot (87%) has less than 90% Free Space.</summary>
		 <comment>Used df -P to get File System capacities.</comment>
		 <compare>/boot</compare>
	 </QEResult>
</TAGResult>

This corresponds with individual Alerts being raised in the Argent Alert
Console for each individual filesystem.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

17

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

18

Argent Guardian – “Predictor” Rules

Below is an example ‘Predictor’ Rule for monitoring Disk Free Space, similar to
the default SCP_LINUX_PDT_DISK_FREE, but simplified for readability.

This Rule uses similar in logic to the original Disk Space Alert Rule, but is used
only for collecting performance data.

#!/bin/sh
Header information, etc....

OBJECT=NOVAL

COUNTER=NOVAL

INSTANCE=NOVAL

METRIC=NOVAL

xmlBegin() - Prints out the definition of the XML format used to
send status data to The Argent Guardian.

xmlBegin()
{
cat <<!
<?xml version=”1.0”?>
<!DOCTYPE PDTResult
[
<!ELEMENT PDTResult (QEResult+)>
<!ELEMENT QEResult (status, performance+)>
<!ELEMENT status (#PCDATA)> <!-- (PERFORMANCE) -->
<!ELEMENT performance (object, counter, instance, metric)>
<!ELEMENT object (#PCDATA) >
<!ELEMENT counter (#PCDATA) >
<!ELEMENT instance (#PCDATA) >
<!ELEMENT metric (#PCDATA) >
]>
<PDTResult>
!
} # End of xmlBegin()

xmlPerformance() - Send a performance block to The Argent Predictor. The
actual value of the metric is stored in <metric>. The other fields
are used to describe the metric. Multiple xmlPerformance() calls may be
made between the xmlBegin() and xmlEnd() functions.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

19

xmlPerformance()
{
 cat <<!
 <QEResult>
 <status>performance</status>
 <performance>
 <object>$OBJECT</object>
 <counter>$COUNTER</counter>
 <instance>$INSTANCE</instance>
 <metric>$METRIC</metric>
 </performance>
 </QEResult>
!
} # End of xmlPerformance()

xmlEnd() - Completes the XML data block.

xmlEnd()
{
 cat <<!
</PDTResult>
!
} # End of xmlEnd()
############################# Main portion of script ##########################

Set the IFS variable, which is used by the read command to parse input.
We wish to read the input one line at a time.

IFS=’
‘
OSNAME=`uname`

EXIT_CODE=0

Define any directories you wish to ignore here. Directory variables
should start at ‘1’ and increment continuously. The following are
three example variables (that would need to be uncommented).

Begin output to The Argent Predictor by sending the XML header.

OBJECT=”$OSNAME Filesystem”

COUNTER=”Pct Free Disk Space”

xmlBegin

Use the df commmand to get the free space for each filesystem.

DF_CMD=”df -P”

for fs in `eval $DF_CMD`; do

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

20

 # FS is the actual filesystem, MNT is the mounted directory. Include
 # an ‘x’ before the line in case the filesystem is blank.

 FS=`echo $fs | awk ‘ { print $1 } ‘`

 MNT=`echo x$fs | awk ‘ { print $6 } ‘`

 # Skip the first line of the df command output, which is the column headers

 if [“$FS” = “Filesystem”]; then

 continue

 fi

 # Get the capacity (disk space used) and the free space

 CAPACITY=`echo $fs | awk ‘ { print $5 } ‘`

 CAPACITY=`echo $CAPACITY | sed ‘s/%//’`

 FREE_SPACE=`expr 100 - $CAPACITY`

 # Send performance data to The Argent Predictor

 INSTANCE=$MNT

 METRIC=$FREE_SPACE

 xmlPerformance

done

Send the XML footer to The Argent Predictor

xmlEnd

exit $EXIT_CODE

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

21

Notice the change in output, the ‘PDTRESULT’ tag is used to identify
performance data, and each ‘QERESULT’ tag corresponds to the
individual performance instance:

<?xml version=”1.0”?>
<!DOCTYPE PDTResult
[
<!ELEMENT PDTResult (QEResult+)>
	 <!ELEMENT QEResult (status, performance+)>
		 <!ELEMENT status (#PCDATA)> <!-- (PERFORMANCE) -->
		 <!ELEMENT performance (object, counter, instance, metric)>
			 <!ELEMENT object (#PCDATA) >
			 <!ELEMENT counter (#PCDATA) >
			 <!ELEMENT instance (#PCDATA) >
		 <!ELEMENT metric (#PCDATA) >
]>
<PDTResult>
	 <QEResult>
		 <status>performance</status>
		 <performance>
			 <object>Linux Filesystem</object>
			 <counter>Pct Free Disk Space</counter>
			 <instance>/</instance>
			 <metric>64</metric>
		 </performance>
	 </QEResult>
	 <QEResult>
		 <status>performance</status>
		 <performance>
			 <object>Linux Filesystem</object>
			 <counter>Pct Free Disk Space</counter>
			 <instance>/boot</instance>
			 <metric>87</metric>
		 </performance>
	 </QEResult>
	 <QEResult>
		 <status>performance</status>
		 <performance>
			 <object>Linux Filesystem</object>
			 <counter>Pct Free Disk Space</counter>
			 <instance>/dev/shm</instance>
			 <metric>100</metric>
		 </performance>
	 </QEResult>
</PDTResult>

This performance data is then stored in the Argent Predictor, and
can be used to create Graphs, Reports,provide historical data for
trend analysis, etc.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

22

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

23

Argent Guardian – Combining “Alert”
And “Predictor” Rules

By default, Argent Guardian UNIX Rules are split between ‘Alert’ Rules and
‘Predictor’ Rules, but there is no reason that they can’t be combined into a
single Rule.

With some clever manipulation, the two types of Rules can be combined to
send Alerts and save Predictor data.

The example below shows a combined Rule, with options for: sending Alerts;
sending Alerts for individual items; and saving Predictor data.

#!/bin/sh
Header information, etc....

The FREE_PCT variable defines the minimum percentage of free disk space
for each filesystem.

FREE_PCT=10

Send Alerts (Y/N)?

ALERT=”Y”

Send individual alerts per instance (Y/N)?

MULTI=”Y”

Save Predictor data (Y/N)?

PREDICTOR=”Y”

Required Argent variables

STATUS=NOVAL

SUMMARY=NOVAL

COMMENT=NOVAL

OBJECT=NOVAL

COUNTER=NOVAL

INSTANCE=NOVAL

METRIC=NOVAL

COMPARE=NOVAL

XML_PERFORMANCE=NOVAL

XML_STATUS=NOVAL

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

24

xmlOut() - Prints out the definition of the XML format used to
send status data to The Argent Guardian.

xmlOut()
{
 cat <<!
<?xml version=”1.0”?>
<!DOCTYPE CombinedResult
[
<!ELEMENT CombinedResult (PDTResult?, TAGResult?)>
 <!ELEMENT PDTResult (QEResult+)>
	 <!ELEMENT QEResult (status, summary?, comment?, compare?, performance?)>
	 <!ELEMENT status (#PCDATA) > <!-- (PERFORMANCE | PASS | FAIL) -->
	 <!ELEMENT summary (#PCDATA) >
	 <!ELEMENT comment (#PCDATA) >
	 <!ELEMENT compare (#PCDATA) >
	 <!ELEMENT performance (object, counter, instance, metric)>
		 <!ELEMENT object (#PCDATA) >
		 <!ELEMENT counter (#PCDATA) >
		 <!ELEMENT instance (#PCDATA) >
		 <!ELEMENT metric (#PCDATA) >
<!ELEMENT TAGResult (QEResult+)>
]>
<CombinedResult>
!

 if [“$PREDICTOR” = “Y”]; then

 	 cat <<!
 <PDTResult>$XML_PERFORMANCE
 </PDTResult>
!

 fi

 if [“$ALERT” = “Y”]; then

 cat <<!
 <TAGResult>$XML_STATUS
</TAGResult>
 !

 fi

 cat <<!
</CombinedResult>
!
} # End of xmlOut()

xmlPerformance() - Send a performance block to The Argent Predictor. The
actual value of the metric is stored in <metric>. The other fields
are used to describe the metric. Multiple xmlPerformance() calls may be
made between the xmlBegin() and xmlEnd() functions.

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

25

xmlPerformance()
{
 XML_PERFORMANCE=”${XML_PERFORMANCE}
 <QEResult>
 <status>performance</status>
	 <performance>
	 <object>$OBJECT</object>
	 <counter>$COUNTER</counter>
	 <instance>$INSTANCE</instance>
	 <metric>$METRIC</metric>
 </performance>
 </QEResult>”
} # End of xmlPerformance()

xmlStatus() - Send a status block to The Argent Guardian. The
status should be ‘PASS’ or ‘FAIL’. The summary explains the result
and the comment is a generic description of the Unix rule.

xmlStatus()
{
 XML_STATUS=”${XML_STATUS}
 <QEResult>
	 <status>$STATUS</status>
	 <summary>$SUMMARY</summary>
	 <comment>$COMMENT</comment>
	 <compare>$COMPARE</compare>
 </QEResult>”
} # End of xmlStatus()

############################# Main portion of script ##########################

Set the IFS variable, which is used by the read command to parse input.
We wish to read the input one line at a time.

IFS=’
‘
Use the df command to get information about the filesystems.

DFCMD=”df -P”

Assume the status of the rule is OK

OBJECT=”UNIX Filesystem”

COUNTER=”Pct Free Disk Space”

STATUS=PASS

EXIT_CODE=0

SUMMARY=”All filesystems have at least ${FREE_PCT}% of their space free”

COMMENT=”Used ${DFCMD} to get File System capacities.”

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

COMPARE=””

XML_PERFORMANCE=””

XML_STATUS=””

Iterate through all the filesystems

for fs in `eval $DFCMD`; do

 # FS is the actual filesystem, MNT is the mounted directory. Include
 # an ‘x’ before the line in case the filesystem is blank.

 FS=`echo $fs | awk ‘ { print $1 } ‘`

 MNT=`echo x$fs | awk ‘ { print $6 } ‘`

 # Skip the first line of DFCMD, which is the column headers

 if [“$FS” = “Filesystem”]; then

	 continue

 fi

 # Derive the free space from the capacity used and compare it to
 # the threshold.

 CAPACITY=`echo $fs | awk ‘ { print $5 } ‘`

 CAPACITY=`echo $CAPACITY | sed ‘s/%//’`

 FREE_SPACE=`expr 100 - $CAPACITY`

 if [“$PREDICTOR”]; then

 INSTANCE=$MNT

 METRIC=$FREE_SPACE

 xmlPerformance

 fi

 if [“$ALERT” = “Y”]; then

 if [“$FREE_SPACE” -lt “$FREE_PCT”]; then

 if [“$MULTI” = “Y”]; then

 # Update the summary string.

 SUMMARY=”File System $MNT (${FREE_SPACE}%) has less than ${FREE_PCT}% Free Space.”

26

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

	 COMPARE=$MNT

	 STATUS=FAIL

	 EXIT_CODE=1

	 xmlStatus
	 fi

	 if [“$MULTI” = “N”]; then

	 if [$STATUS = “PASS”]; then

		 SUMMARY=”These filesystems have less than ${FREE_PCT}% Free Space.”

		 EXIT_CODE=1

	 fi

	 STATUS=FAIL

	 SUMMARY=”${SUMMARY}
	 $MNT: ${FREE_SPACE}% Free “

 	 fi

 fi

 fi

done

if [$STATUS = “PASS” -o $MULTI = “N”]; then

xmlStatus

fi

 # Report the findings back to The Argent Guardian

xmlOut

exit $EXIT_CODE

27

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

Notice the output of the combined Rule. The XML DTD has been
updated to allow both ‘PDTRESULT’ and ‘TAGRESULT’ tags, to save
Predictor data and send Alerts, respectively.

<?xml version=”1.0”?>
<!DOCTYPE CombinedResult
[
<!ELEMENT CombinedResult (PDTResult?, TAGResult?)>
	 <!ELEMENT PDTResult (QEResult+)>
		 <!ELEMENT QEResult (status, summary?, comment?, compare?, performance?)>
			 <!ELEMENT status (#PCDATA)> <!-- (PERFORMANCE | PASS | FAIL) -->
			 <!ELEMENT summary (#PCDATA) >
			 <!ELEMENT comment (#PCDATA) >
			 <!ELEMENT compare (#PCDATA) >
			 <!ELEMENT performance (object, counter, instance, metric)>
				 <!ELEMENT object (#PCDATA) >
				 <!ELEMENT counter (#PCDATA) >
				 <!ELEMENT instance (#PCDATA) >
				 <!ELEMENT metric (#PCDATA) >
	 <!ELEMENT TAGResult (QEResult+)>
]>
<CombinedResult>
	 <PDTResult>
		 <QEResult>
			 <status>performance</status>
			 <performance>
				 <object>UNIX Filesystem</object>
				 <counter>Pct Free Disk Space</counter>
				 <instance>/</instance>
				 <metric>64</metric>
			 </performance>
		 </QEResult>
		 <QEResult>
			 <status>performance</status>
			 <performance>
				 <object>UNIX Filesystem</object>
				 <counter>Pct Free Disk Space</counter>
				 <instance>/boot</instance>
				 <metric>87</metric>
			 </performance>
		 </QEResult>
		 <QEResult>
			 <status>performance</status>
			 <performance>
				 <object>UNIX Filesystem</object>
				 <counter>Pct Free Disk Space</counter>
				 <instance>/dev/shm</instance>
				 <metric>100</metric>
			 </performance>
		 </QEResult>
</PDTResult>
<TAGResult>

28

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

		 <QEResult>
			 <status>FAIL</status>
			 <summary>File System / (64%) has less than 90% Free Space.</summary>
			 <comment>Used df -P to get File System capacities.</comment>
			 <compare>/</compare>
		 </QEResult>
		 <QEResult>
			 <status>FAIL</status>
			 <summary>File System /boot (87%) has less than 90% Free Space.</summary>
			 <comment>Used df -P to get File System capacities.</comment>
			 <compare>/boot</compare>
		 </QEResult>
	 </TAGResult>
</CombinedResult>

29

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

Argent Data Consolidator

The Argent Data Consolidator provides you with all the archiving and
compliance facilities you need, in a single product, regardless of
platform - Windows, UNIX, Linux, IBM mainframe, Cisco device or any
network device.

Argent can even consolidate logs and files from air conditioning units
and UPS power supplies - if the hardware has a log or file Argent can
consolidate it.

Argent consolidates your logs and files to one or more central ODBC
databases for reporting or analysis. During consolidation you have the
option of analyzing each record, and be alerted when anomalies are
detected.

Because Argent supports any ODBC backend, you might use Argent to
do this:

• Windows Event logs from all 200 Windows servers to SQL Server 	
 backend in Stuttgart.

• PST email files from all 20,000 users to an Oracle backend in 	
 London.

• Unix SYSLOGs from 350 Solaris machines to a MySQL backend in 	
 Palo Alto.

• All UPS and AirCon hardware exception logs and files to a SQL 	
 Server backend in Chicago.

• All Cisco logs to a MySQL backend in Sydney.

As you can see the potential with Argent is limitless. Setup in hours
not weeks.

Filters
Filters allow you to optionally limit the records to be consolidated - you
can consolidate all the records from a Data Source, or you can selec-
tively consolidate.

Alerts

In addition to consolidation and filtering, Argent Data Consolidator
Rules can be setup to send Alerts when specific conditions are found
in the logs that are being scanned.

For more in depth information, See Also:
http://help.Argent.com/#rul_adc

ASCII Logs

Argent Data Consolidator comes preinstalled with many Rules
for parsing common UNIX log files, eg: Cron log, boot log, etc.

The ASCII File Rules let you parse and test any ASCII log file for
any computing platform - Solaris, HP-UX, AIX, W200x, Cisco.

The existing Rules for UNIX monitoring in Argent Data Con-
solidator can be accessed via Data Security > ASCII Files >
UNIX > UNIX Flavor

As ASCII log files are all different and have different tokens or
keywords in different locations in the record, you can create
different Rules to parse the data.

Let’s look at the sample ASCII File Rule:

Here -- on a single Argent screen - all the criteria are
specified:

• The format of the Time Stamp

• The order of the fields

• The offset of the fields

For a detailed description of the Log Parsing
Specification, See Also:
http://help.Argent.com/#adc_log_spec

30

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

Syslog

SYSLOG Message rules are used to consolidate SYSLOG events.

SYSLOG is an event logging protocol (IETF standard http://www.ietf.
org/html.charters/syslog-charter.html) running over the network.

Citation from IETF RFC3164:

syslog uses the user datagram protocol (UDP) as its underlying trans-
port layer mechanism. The UDP port assigned to syslog is 514.

Argent acts as a SYSLOG server by listening for the incoming SYS-
LOG messages on UDP 514, and consolidates them into the central
databases you’ve defined.

The SYSLOG Rule below will consolidate all events according to the
selections in the Message Priority section and the Message Facility
section.

Once you’ve defined the Basic tab you can optional add Rule Filters
and Rule Alerts.

For further information on setting up SYSLOG Rules, See Also:
http://help.Argent.com/#Q061

31

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

Appendix A: UNIXSSH.INI

Argent Guardian includes the ability to do secure agent-less UNIX
monitoring using the Secure Shell protocol.

This is achieved from the Windows machine using the PuTTy tools,
PSCP and PLINK, using the following techniques:

Argent XT 8.0A-0810 or below

1. Copy script to UNIX machine /tmp directory.

2. Change script permissions to make it executable.

3. Execute the script, reading the output from STDOUT.

4. Remove the file from the UNIX machine /tmp directory.

Argent XT 8.0A-0901-B or above

1. SSH into UNIX machine.

2. From command line, type in the whole script ended with CTRL-D.

3. Read the output of script from STDOUT.

Prior to Argent XT 8.0A-0901-B, the actual commands for copying,
running and removing the script could be manually specified via the
UNIXSSH.INI file, located in each Argent product directory.

eg: C:\ ARGENT\ArgentManagementConsole\ArgentGuardian\
UNIXSSH.INI

This allowed customers to modify the commands for custom opera-
tions, such as authorization using private keys, optimizing the com-
mands into a single operation, etc.

An added benefit of the older method is the ability to create Rules in
other languages, eg: Perl.

Unfortunately, as of Argent XT 8.0A-0901-B, this UNIXSSH.INI file is no
longer read as the techniques for connecting to UNIX machines have
been changed.

Luckily, customers can choose to revert back to the “old”, but slower
execution method by changing the registry entry:

HKLM\SOFTWARE\Argent\ArgentGuardian\MonitoringEngine\SSH_
NO_COPY_SCRIPT

Set the value to 0 (ZERO) to revert to using UNIXSSH.INI

This needs to be done on every single Monitoring Engine
where the old method wants to be used.

Customizing UNIXSSH.INI

By default, SSH monitoring is a four-stage operation, which is
fine for most implementations. However if you are monitoring
several hundred UNIX\Linux servers, or simply want to reduce
the number of required SSH connections from the Argent
server, you will need to update the ‘UNIXSSH.INI’ file.

Contents of default ‘UNIXSSH.INI’:

0 {SSH_BIN}PSCP -P {PORT} -pw {PASSWORD} {SOURCE_ 	
 SCRIPT} {USER}@{HOST}:{TARGET_SCRIPT}

0 {SSH_BIN}PLINK -P {PORT} -pw {PASSWORD} {USER}@ 	
 {HOST} “chmod +x {TARGET_SCRIPT}”

1 {SSH_BIN}PLINK -P {PORT} -pw {PASSWORD} {USER}@	
 {HOST} {TARGET_SCRIPT_WITH_PARAM}

0 {SSH_BIN}PLINK -P {PORT} -pw {PASSWORD} {USER}@	
 {HOST} “rm -f {TARGET_SCRIPT}”

Simply replace the existing file with the optimized file linked
below. The optimized file reduces the number of required con-
nections by combining lines two, three, and four into a single
execution of PLINK.

Contents of optimized ‘UNIXSSH.INI’:

0 {SSH_BIN}PSCP -P {PORT} -pw {PASSWORD} {SOURCE_ 	
 SCRIPT} {USER}@{HOST}:{TARGET_SCRIPT}

1 {SSH_BIN}PLINK -P {PORT} -pw {PASSWORD} {USER}@	
 {HOST} “chmod +x

{TARGET_SCRIPT};{TARGET_SCRIPT_WITH_PARAM};rm -f
{TARGET_SCRIPT}”;

UNIXSSH.INI can be further customized, for example, to use
private keys for authorization instead of username/passwords:

0 {SSH_BIN}PSCP -P {PORT} –i C:\keys\private.ppk
 SOURCE_ SCRIPT} {USER}@{HOST}:{TARGET_SCRIPT}

1 {SSH_BIN}PLINK -P {PORT} –i C:\keys\private.ppk {USER}@	
 {HOST} “chmod +x

{TARGET_SCRIPT};{TARGET_SCRIPT_WITH_PARAM};rm -f
{TARGET_SCRIPT}”;

32

© ArgSoft Intellectual Property Holdings, Limited. 1991 - 2010

ENCYCLOPEDIAUnix Monitoring Overview

33

Note: ArgSoft Intellectual Property Holdings Limited has created this White Paper for informational purposes only. ArgSoft Intellectual Property Holdings Limited makes no

warranties, express or implied, in this document. The information contained in this document is subject to change without notice. ArgSoft Intellectual Property Holdings Limited

shall not be liable for any technical or editorial errors, or omissions contained in this document, nor for incidental, indirect or consequential damages resulting from the

furnishing, performance, or use of the material contained in this document, or the document itself. All views expressed are opinions of ArgSoft Intellectual Property Holdings

Limited. All trademarks are the property of their respective owners.

