

Trade secret of Argent Software
 Confidential and Proprietary Information Page 1 of 89

Argent for Java

Trade secret of Argent Software
 Confidential and Proprietary Information Page 2 of 89

Note: ArgSoft Intellectual Property Holdings Limited has created this document for informational purposes

only. ArgSoft Intellectual Property Holdings Limited makes no warranties, express or implied, in this

document. The information contained in this document is subject to change without notice. ArgSoft

Intellectual Property Holdings Limited shall not be liable for any technical or editorial errors, or omissions

contained in this document, nor for incidental, indirect or consequential damages resulting from the

furnishing, performance, or use of the material contained in this document, or the document itself. All views

expressed are opinions of ArgSoft Intellectual Property Holdings Limited. All trademarks are the property of

their respective owners.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 3 of 89

Table of Contents

Introduction ... 4

What is Argent for Java? .. 5

Why Argent for Java? ... 5

The Java Virtual Machine (JVM) ... 7

Memory Management ... 8

Heap Memory ... 8

Non-Heap Memory .. 9

Garbage Collection ... 11

Thread Statistics ... 12

Class Loader Statistics .. 13

Java Just-In-Time (JIT) Compilation Statistics... 14

CPU Statistics ... 15

Uptime Statistics ... 15

Host Memory Statistics ... 15

Argent for Java Prerequisites.. 16

Connectivity .. 17

Connectivity With No User Authentication Or SSL .. 18

Connectivity with User Authentication ... 19

Connectivity with User and SSL Authentication ... 20

Connectivity with SSL Authentication .. 21

Argent for Java Rules ... 23

General Rules ... 23

Survivor Space Rules .. 28

Eden Space Rules .. 35

Old Space Rules ... 42

Non-Heap Memory Rules .. 50

Java Class Loader Statistics Rules ... 69

Thread Statistics Rules ... 71

Just-In-Time Compiler Statistics Rules .. 78

System Memory Usage Rule ... 79

CPU Uptime Rule .. 81

Custom MBeans Attributes Rules.. 82

Custom MBeans Attribute Delta Rules .. 83

UNIX Rules ... 84

JVM Logon Rules .. 85

Appendix .. 86

Trade secret of Argent Software
 Confidential and Proprietary Information Page 4 of 89

Introduction

Designed and architected by technology visionary James Gosling in the mid-1990s, Java is a very popular

programming language that has been adopted by many software developers. Programs written in Java

are used today on millions of devices worldwide.

Java is the buzzword today everywhere.

Google’s Android phones are a key factor and, while Android dominates the smartphone industry, Java is

increasingly used in home appliances like televisions, refrigerators, dishwashers, and security systems.

Java is an important technology driving the explosive growth of the Internet, especially smart devices and

the ‘Internet of Things’. Keep counting the number of computers and devices that use Java as the list is

growing day by day.

Java’s rapid adoption and growth cannot be attributed only to Android. Java can be easily ported to a wide

variety of operating systems and platforms. Java can be used in Web applications, mobile apps, and

complex user interface (UI) programs. Java can be used to integrate divergent legacy applications in

extract-transfer-load (ETL) scenarios.

With so many Java programs all around us, it is important to manage and monitor existing and emerging

Java-based applications.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 5 of 89

What is Argent for Java?

Argent for Java is a comprehensive tracking, monitoring, and management solution focused on Java-based

applications across your enterprise.

Argent for Java provides a rule-based monitoring engine that collects statistics and metrics about your Java

applications and reports and generates alerts for exception conditions.

Why Argent for Java?

Although Java has been ported and migrated to many operating systems and platforms, the language and

run time performance is rarely optimized for each particular platform. Independent Software Providers

(ISPs) and IT departments are often most concerned about delivering application features and functionality

as a priority ahead of performance and reliability.

The performance and reliability of Java-based applications vary widely and are not consistent. A Java

application developed for a UNIX platform may perform poorly on a Windows platform (and vice versa).

Tracking, monitoring, and managing your Java-based applications’ performance and resource utilization is

critically important, especially in non-stop environments such as customer-facing website applications.

Monitoring CPU and memory utilization can provide useful information but does not help you relate that

information to your Java applications.

Argent for Java makes monitoring and managing your Java applications both easy and efficient. With

Argent for Java you can forget about memory leaks, deadlocked and blocked threads, CPU overload, and

more.

Argent for Java helps ensure your Java-based applications perform smoothly and reliably across your

entire enterprise.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 6 of 89

Argent for Java screens both JVMs and base servers via Java

Management Extensions (JMX) technology.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 7 of 89

The Java Virtual Machine (JVM)

Java incorporates a design architecture called the Java Virtual Machine (JVM). The JVM is a hypervisor

that executes the Java programs written for it. An implementation of the JVM is part of making Java

available on a given platform and operating system. Without an implementation of the JVM, Java

programs cannot run. Java programs running within the JVM provide platform independence. This is

because JVM converts the Java program’s commands to the native language of the machine or device

where the JVM and the Java program are installed.

When a Java application is launched, a JVM is instantiated for that application and persists in memory until

the application completes. Internally, within a given operating system, there will be as many JVM’s as

there are Java applications launched.

Under Microsoft Windows, this is comparable to running a console-style application within a DOS command

prompt window: There will be as many DOS command prompt windows as there are console-style

command line programs active.

Since a JVM is a run-time environment for a Java application, each JVM will consume computer resources

such as memory, CPU, and so on.

Argent for Java provides collects vital statistics for the JVM (and, correspondingly, the companion Java

application).

Metrics and statistics collected include: Memory and CPU usage, CPU time consumed, thread and handle

usage, thread counts, locks / deadlocks, and many more.

Argent for Java also keeps track of similar metrics for host machine where the JVM has been instantiated.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 8 of 89

Memory Management

Within an instantiated JVM, memory must be allocated for new objects. Each JVM divides memory

allocation into two categories: Heap Memory and Non-Heap Memory.

Heap Memory

Java heap memory from the Operating System is allocated by the JVM and it manages the heap for its

Java Application. Every time the Java application creates a new object, the Java Virtual Machine gives out

an adjacent space or an array of heap memory to store it within the heap memory already it took from the

OS. “Live” objects that are frequently referenced by other objects are retained in the heap and those not

referenced anymore are emptied from the heap or Garbage Collected by the JVM. This frees the heap

memory.

The most newly created objects are referred to as “Young” generation by JVM algorithms and they become

“Old” generation after they endure a few garbage collection processes. The young generation holds on to a

small but extremely active segment of the heap where new objects are allocated. When the space allocated

for Young generation gets full, a special garbage collection called ‘young collection’ frees up some of the

young heaps by moving or promoting the oldest of the “Young” heaps to the “Old” heap. This frees up some

space in Young heap which lets the JVM to allocate new objects again. ‘Old collection’ frees up space in

the old heap by running a garbage collection in the old heap.

Young generation heap is again split into Eden Space and Survivor Space.

Eden Space is where new objects are actually allocated in the young heap. Many of these newly created

objects will be dereferenced soon after they are created and become inaccessible. Objects that are not

dereferenced are passed on to survivor space by the garbage collector first. In exceptional cases they get

copied directly into the old generation heap.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 9 of 89

Survivor Space is where the young generation objects that are not dereferenced are moved into by the

garbage collector. In the survivor space, the surviving objects are shifted within the space to survive a few

more GC passes after which only they move on to the “Old generation” heap. This is for optimal utilization

of heap memory.

Old/Tenured space is the “Old generation” heap which is the largest memory pool to keep the objects

that need to live for longer periods. Objects that leave survivor spaces are copied into tenured space.

Non-Heap Memory

Java Virtual Machine’s non-heap memory stores the runtime constant pool, field and function data and the

program for functions and constructors for each class structure. It is a work area which is shared by all

threads and the memory used for optimization of JVM’s internal processing.

Non-Heap memory is further split into Permanent Generation (PERM) and Code Cache.

Permanent Space is the pool that contains metadata of the virtual machine as such, like the class,

method objects etc.

Code Cache contains the memory used for compilation and storage of native code by JVM.

The subsequent heap memory parameters are screened by Argent for Java:

Eden Space Usage: Keeps track of the space used (%, KB, MB and GB) by Eden space

Survivor Space Usage: Keeps track of the space used (%, KB, MB and GB) by Survivor space

Old/Tenured Space Usage: Keeps track of the space used (%, KB, MB and GB) by Old/Tenured space

Trade secret of Argent Software
 Confidential and Proprietary Information Page 10 of 89

Overall Heap Memory Usage: Keeps track of the space used (%, KB, MB and GB) by overall heap

memory

The subsequent non-heap memory parameters are screened by Argent for Java:

Permanent Space Usage: Keeps track of the space consumed (%, KB, MB and GB) by Permanent

space

Code Cache Usage: Keeps track of the space consumed (%, KB, MB and GB) by Code Cache

Trade secret of Argent Software
 Confidential and Proprietary Information Page 11 of 89

Garbage Collection

Garbage Collection (or GC) is a process that makes sure that unused memory is freed while an application

is running. This process makes memory management and the application more efficient. When an

application starts up each object is provided a memory space in the heap so that it can be referenced easily

within the program or application. Garbage Collection identifies the objects that are never referenced and

clears the space in memory booked for them. This makes space for new objects which are referenced in

the heap.

Earlier programming languages like C required manual allocation and de-allocation of memory. Java comes

with an in-built Garbage Collector which makes memory allocation more efficient.

Argent for Java tracks and monitors the following aspects of a Java Garbage Collector:

Time Spent For Garbage Collection: Estimated time taken for garbage collection

Number of Collections: Total rounds of garbage collection that have been processed or completed

Trade secret of Argent Software
 Confidential and Proprietary Information Page 12 of 89

Thread Statistics

One of the most important features of Java is that the JVM allows synchronized multi-threading with each

thread executing its own function while JVM in itself remains a single process. A most commonly used

example of such an application is an instant messenger which runs 2 threads – one waits for user’s input

while the other keeps checking the server for incoming posts. Another instance is a server application

processing and executing different requests in different threads whereas certain requests in may have

multiple threads running parallel.

Each thread or process utilizes part of the memory, CPU and storage are available to a JVM. Each JVM

starts a new thread at the start or main() method of a program. Each process or thread within the program

initiates a new path from it and stays independent. These threads can run concurrently on separate

processors or in a single processor also. How the threads are prioritized processing on the same processor

is controlled by the thread scheduler.

If we keep track of threads in a JVM, we can easily spot out the deadlocks by recognizing the code that

takes up more CPU resources.

Argent for Java monitors the following types of JVM threads:

Live Threads: Number of live threads currently running

Daemon Threads: Number of daemon threads currently running

Total Threads Started: Total number of threads created and also started since the Java Virtual Machine

started

Peak Threads: Peak live thread count since the Java Virtual Machine started or peak was reset

Thread’s CPU Time: Total CPU time consumption of JVM threads

Deadlocked Threads: Number of threads that are in deadlock waiting to acquire object monitors

Trade secret of Argent Software
 Confidential and Proprietary Information Page 13 of 89

Class Loader Statistics

Java Runtime Environment or JRE loads the required Java classes automatically into the JVM with the help

of the Java Class Loader. It is a part of JRE and makes life easier for Java runtime system which need not

bother about the files and file systems.

The following aspects of a Java Class loader are closely tracked by Argent for Java:

Loaded Class Count: Keeps track of the number of classes loaded in JVM at any given time.

Total Loaded Class Count: Keeps track of the total number of classes loaded from the time when JVM

started execution.

Unloaded Class Count: Keeps track of the number of classes unloaded from the JVM from the time

when JVM started execution.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 14 of 89

Java Just-In-Time (JIT) Compilation Statistics

The Java compiler converts Java code into bytecode which is easily understood by the hardware’s

processor. Bytecode does not depend on an operating system or a platform; rather it is understood by the

device that runs the code. Java uses a Just-In-Time or JIT compiler that converts the bytecode into the

device’s native machine code. Since this compilation is done in runtime it is called a Just-In-Time or JIT

compiler. Java’s JIT can access dynamic runtime data and optimize in-line functions used repeatedly

contrary to a standard compiler that cannot access runtime information.

Argent for Java tracks the time spent in JIT compilation.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 15 of 89

CPU Statistics

Argent for Java tracks and monitors the subsequent CPU usage records of JVM:

CPU Time Consumption: Keeps track of the CPU time consumed by the processes on which the JVM

is running.

CPU Usage: Keeps track of the "current CPU usage" for the JVM processes

Uptime Statistics

Argent for Java tracks and monitors the Uptime or time since the Java Virtual Machine process initiated

Host Memory Statistics

The memory details of the host machine that runs the JVMs are very important figures. Argent for Java

tracks and monitors the subsequent memory information of a host machine.

Physical Memory Usage: Keeps track of the host machine's physical memory utilization

Swap Memory Usage: Keeps track of the host machine's swap space utilization

Trade secret of Argent Software
 Confidential and Proprietary Information Page 16 of 89

Argent for Java Prerequisites

Argent for Java requires:

1) An Argent server

a. The Argent server can be 32-bit, if needed

2) A 32-bit version of JDK 1.7 (or above)

3) After installing the JDK, the JAVA_HOME environment variable must be configured

a. Right click on the Computer icon and select Properties from the context menu

b. Select Advanced system settings on the left portion of the window

c. Click the Environment Variables button

i. In the System Variables section, navigate to the JAVA_HOME environment

variable, select it, and click Edit

ii. Type the folder location where the JDK software was installed, e.g. D:\Program

Files (x86)\Java\jdk1.8.0_51

Trade secret of Argent Software
 Confidential and Proprietary Information Page 17 of 89

Connectivity

Java Management Extensions (or JMX) technology inherent in the Java Virtual Machine is a mechanism

that helps you to keep track of the JVM’s efficiency. Argent for Java connects to and screens a remote JVM

using JMX technology. The basic details such as machine name (where a JVM is operating), port number,

and user details need to be provided. The following sections explain the configuration in more detail.

When a Java application starts, several properties must be configured to enable the JMX manager to

monitor the Java Virtual Machine. To explain further, the following command-line system properties should

be set up to start a Java application named “MyJavaProgram”:

The port is the port number which enables the JMX connections

Argent for Java can connect to a remote JVM in 4 different ways using JMX.

1. Connectivity that requires no user validation or SSL

2. Connectivity that requires user validation

3. Connectivity that requires user and SSL validations

4. Connectivity that requires SSL validation

Trade secret of Argent Software
 Confidential and Proprietary Information Page 18 of 89

Connectivity With No User Authentication Or SSL

In this method, no user or SSL verification is required to connect to a remote JVM. It can be set up by

configuring the port number and setting all remote user verification properties to false in the command-line

as follows:

Make sure that the same port number is referenced in the Argent for Java node properties dialog:

Set the JMX options for Use Authentication and Use SSL to False.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 19 of 89

Connectivity with User Authentication

In this method, user verification is required to connect to a remote JVM. The subsequent basic

command-line values must be provided when starting the Java application to be monitored:

A password file stores the username and password to authenticate.

Set the following properties in the Argent for Java node properties dialog:

• Port number of the remote machine to connect (which runs the JVM)

• Set Port Authentication to true

• Provide the user credentials such as username and password for verification

For this type of connection, set Use SSL to False.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 20 of 89

Connectivity with User and SSL Authentication

In this method, user and SSL authentications are required to connect to a remote JVM. The basic

command line values to be set when starting the Java application are as follows:

A password file stores the username and password to authenticate.

Specify the path of certificate keystore file and provide the keystore password for SSL authentication.

Make sure to set the following properties in the Argent for Java node properties dialog:

• Port number of the remote machine to connect (which runs the JVM)

• Set Use Authentication to True

• Set Use SSL to True

• Provide the user credentials such as username and password for verification

• Specify the path of SSL certificate keystore file

• Provide the SSL certificate keystore password

Trade secret of Argent Software
 Confidential and Proprietary Information Page 21 of 89

Connectivity with SSL Authentication

In this method, only SSL authentication is required to connect to a remote JVM. The basic command line

values to be set when starting the Java application are as follows:

Specify the path of certificate keystore file and provide the keystore password for SSL authentication

Make sure you set the following properties in Argent for Java node properties dialog:

• Port number of the remote machine to connect (which runs the JVM)

• Set Use SSL to True

• Specify the path of SSL certificate keystore file

• Provide the SSL certificate keystore password

After the attributes of JMX are set for the connection type you want to use, make sure to check that the

JMX connectivity test returns [VALID].

Trade secret of Argent Software
 Confidential and Proprietary Information Page 22 of 89

Trade secret of Argent Software
 Confidential and Proprietary Information Page 23 of 89

Argent for Java Rules

Argent for Java contains rules that track and monitor different statistics and metrics for a JVM. Threshold

values are configured for each rule and values retrieved by Argent for Java during execution are checked

against configured rules.

Argent for Java generates alerts whenever the actual values diverge from the configured thresholds.

General Rules

Argent for Java provides support for general rules that apply to nearly every executing Java application:

1) CPU usage consumed

2) CPU time consumed

3) Garbage collection count

4) Garbage collection time

Trade secret of Argent Software
 Confidential and Proprietary Information Page 24 of 89

CPU Usage

This rule monitors CPU usage consumed by a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 25 of 89

CPU Time

This rule monitors CPU time consumed by a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 26 of 89

Garbage Collection Count

This rule monitors the garbage collection count within a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 27 of 89

Garbage Collection Time

This rule monitors the total time consumed by garbage collection in a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 28 of 89

Survivor Space Rules

A JVM allocates heap memory when it starts up. The JVM stores all runtime data in this heap. The JVM

assigns memory for all objects and arrays and is typically used by all JVM threads. The heap memory is

automatically deallocated by garbage collection when created objects are no longer referenced by a given

Java program. Garbage collection automatically recycles the memory allocated for any object in the heap.

JVM heap memory is further segregated into young and old (or tenured) generations. The young

generation space is segregated again into Eden space and Survivor space. All heap memory areas are

monitored by Argent for Java.

Argent for Java provides support for the following survivor space rules:

1) Survivor Space Utilization

2) Survivor Space Initial Size

3) Survivor Space Committed Size

4) Survivor Space Maximum Size

5) Survivor Space Peak Usage

6) Survivor Space Peak Maximum Size

Trade secret of Argent Software
 Confidential and Proprietary Information Page 29 of 89

Survivor Space Utilization

Survivor space is used to store the surviving objects of a young generation over a few rounds of garbage

collection. The total survivor space utilized by a JVM is monitored by Argent for Java.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 30 of 89

Survivor Space Initial Size

This rule monitors the initial survivor memory space requested by a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 31 of 89

Survivor Space Committed Size

This rule monitors the committed size of survivor memory for a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 32 of 89

Survivor Space Maximum Size

This rule monitors the maximum size of survivor memory in a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 33 of 89

Survivor Space Peak Usage

This rule tracks the maximum usage of survivor memory at any given point of time as a percentage of

usage.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 34 of 89

Survivor Space Peak Maximum Size

This rule tracks the maximum space utilized by survivor memory at any given point in time

Trade secret of Argent Software
 Confidential and Proprietary Information Page 35 of 89

Eden Space Rules

Newly created objects are allocated in Eden Space within a JVM. Many newly created objects become

de-referenced and are inaccessible soon after their creation. Garbage collection moves some of these

not-yet-dereferenced objects into Survivor Space.

Argent for Java monitors the Eden Space consumption in a JVM.

Argent for Java provides support for the following Eden space rules:

1) Eden Space Usage Rule

2) Eden Space Initial Size

3) Eden Space Committed Size

4) Eden Space Maximum Size

5) Eden Space Peak Usage

6) Eden Space Peak Maximum Size

Trade secret of Argent Software
 Confidential and Proprietary Information Page 36 of 89

Eden Space Usage Rule

This rule monitors Java Virtual Machine's Eden Space utilization

Trade secret of Argent Software
 Confidential and Proprietary Information Page 37 of 89

Eden Space Initial Size

This rule monitors the initial eden space requested by a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 38 of 89

Eden Space Committed Size

This rule monitors the committed size of eden space for a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 39 of 89

Eden Space Maximum Size

This rule monitors the maximum size of eden memory in a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 40 of 89

Eden Space Peak Usage

This rule monitors the peak usage of eden memory

Trade secret of Argent Software
 Confidential and Proprietary Information Page 41 of 89

Eden Space Peak Maximum Size

This rule monitors the peak maximum size of eden memory

Trade secret of Argent Software
 Confidential and Proprietary Information Page 42 of 89

Old Space Rules

Java virtual machines (JVMs) use the old (or tenured) space in heap memory to store objects that are

required for long durations.

Argent for Java provides support for the following old space rules:

1) Old Space Utilization

2) Old Space Initial Size

3) Old Space Committed Size

4) Old Space Maximum Size

5) Old Space Peak Usage

6) Old Space Peak Maximum Size

7) Overall Heap Memory Utilization

Trade secret of Argent Software
 Confidential and Proprietary Information Page 43 of 89

Old Space Utilization

This rule monitors old space utilization in a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 44 of 89

Old Space Initial Size

This rule monitors the initial size of the old or tenured memory requested by a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 45 of 89

Old Space Committed Size

This rule monitors the commited size of the old or tenured memory available for use by a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 46 of 89

Old Space Maximum Size

This rule monitors the maximum size of the old or tenured memory in a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 47 of 89

Old Space Peak Usage

This rule monitors the peak usage of old or tenured memory in a JVM at any given time

Trade secret of Argent Software
 Confidential and Proprietary Information Page 48 of 89

Old Space Peak Maximum Size

This rule monitors the maximum peak size of old or tenured memory available in a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 49 of 89

Overall Heap Memory Utilization

This rule monitors the overall Heap Memory consumption which is a sum of Eden Space, Survivor space

and Old / Tenured Space

Trade secret of Argent Software
 Confidential and Proprietary Information Page 50 of 89

Non-Heap Memory Rules

The non-heap memory is a work area which is shared by a JVM across all threads and is the memory

utilized by a JVM for internal processing and optimization. For each class, for example, the non-heap

memory contains the runtime constant pool, variables and functional data, and the actual program data for

the functions or methods and constructors.

Non-heap memory is further split into Permanent Generation and Code Cache.

Permanent Space Utilization

The permanent space in a JVM contains information such as declared classes and functions. Argent for

Java monitors the Permanent Space utilization..

Trade secret of Argent Software
 Confidential and Proprietary Information Page 51 of 89

Permanent Space Initial Size

This rule monitors the initial size of metaspace or permanent memory requested by a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 52 of 89

Permanent Space Committed Size

This rule monitors the guaranteed size of permanent memory space available for a JVM.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 53 of 89

Permanent Space Maximum Size

This rule monitors the maximum allowed size of permanent space in a JVM.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 54 of 89

Permanent Space Peak Usage

This rule monitors peak permanent space usage in use at any given time

Trade secret of Argent Software
 Confidential and Proprietary Information Page 55 of 89

Permanent Space Peak Maximum Size

This rule monitors the maximum peak amount of metaspace/permanent memory that can be used for

memory management

Trade secret of Argent Software
 Confidential and Proprietary Information Page 56 of 89

Compressed Class Space Usage

This rule monitors Java Virtual Machine's Compressed Class space utilization.This statistics is only

available in JVM running in 64 bit version of JDK 8 or above

Trade secret of Argent Software
 Confidential and Proprietary Information Page 57 of 89

Compressed Class Space Initial Size

This rule monitors the initial amount of compressed class memory that the jvm requests from the operating

system for memory management.This statistics is only available in JVM running in 64 bit version of JDK 8

or above

Trade secret of Argent Software
 Confidential and Proprietary Information Page 58 of 89

Compressed Class Space Committed Size

This rule monitors the amount of compressed class memory that is guaranteed to be available for use by

the JVM.This statistics is only available in JVM running in 64 bit version of JDK 8 or above

Trade secret of Argent Software
 Confidential and Proprietary Information Page 59 of 89

Compressed Class Space Maximum Size

This rule monitors the maximum amount of compressed class memory that can be used for memory

management.This statistics is only available in JVM running in 64 bit version of JDK 8 or above

Trade secret of Argent Software
 Confidential and Proprietary Information Page 60 of 89

Compressed Class Space Peak Usage

This rule monitors the peak amount of compressed class memory currently used.This statistics is only

available in JVM running in 64 bit version of JDK 8 or above

Trade secret of Argent Software
 Confidential and Proprietary Information Page 61 of 89

Compressed Class Space Peak Maximum Size

This rule monitors the maximum peak amount of compressed class memory that can be used for memory

management.This statistics is only available in JVM running in 64 bit version of JDK 8 or above

Trade secret of Argent Software
 Confidential and Proprietary Information Page 62 of 89

Code Cache Utilization

Memory used for compiling and storing native Java code is stored in an area of memory called the code

cache. Argent for Java monitors the code cache.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 63 of 89

Code Cache Initial Size

This rule monitors initial size of memory requested for the code cache

Trade secret of Argent Software
 Confidential and Proprietary Information Page 64 of 89

Code Cache Committed Size

This rule monitors the committed code cache memory available in a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 65 of 89

Code Cache Maximum Size

This rule monitors the maximum size of the space allowed for management of the code cache

Trade secret of Argent Software
 Confidential and Proprietary Information Page 66 of 89

Code Cache Peak Usage

This rule monitors the peak amount of code cache memory currently used

Trade secret of Argent Software
 Confidential and Proprietary Information Page 67 of 89

Code Cache Peak Maximum Size

This rule monitors the peak maximum size of code cache memory

Trade secret of Argent Software
 Confidential and Proprietary Information Page 68 of 89

Overall Non-Heap Memory Utilization

This rule monitors the total amount of non-heap memory utilized

Trade secret of Argent Software
 Confidential and Proprietary Information Page 69 of 89

Java Class Loader Statistics Rules

One of Java’s main features is the Class Loader which is part of the Java Runtime Environment or JRE.

The JRE loads all required classes during execution of a Java program. The JRE instantiates class objects

at run time on demand.

Argent for Java provides the following rules for monitoring the JRE Class Loader.

Total Classes Loaded Rule

This rule monitors the number of classes loaded from the start of a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 70 of 89

Current Classes Loaded Count

This rule monitors the number of classes loaded in a JVM at any given time

Trade secret of Argent Software
 Confidential and Proprietary Information Page 71 of 89

Thread Statistics Rules

A JVM will always contain multiple Java threads, including Java internal JVM threads.

Argent for Java provides the following rules to monitor JVM threads.

Live Thread Count Rule

This rule monitors the count of threads in a JVM at any given point of time

Trade secret of Argent Software
 Confidential and Proprietary Information Page 72 of 89

Live Daemon Thread Count Rule

Java performs some low-priority tasks in daemon threads that execute only after all the non-daemon

threads have executed. The JVM can even exit a program while the Daemon threads are running.

Argent for Java provides a rule to monitor the number of daemon threads running.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 73 of 89

Peak Live Thread Count Rule

This rule monitors the peak thread live count since the JVM started (or the peak value was reset)

Trade secret of Argent Software
 Confidential and Proprietary Information Page 74 of 89

Total Threads Started Count Rule

This rule monitors the total number of threads created or started since the JVM started

Trade secret of Argent Software
 Confidential and Proprietary Information Page 75 of 89

Total Thread CPU Time Rule

This rule monitors the total CPU time utilized by all threads in a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 76 of 89

Deadlocked Threads Rule

When two or more threads in the JVM are waiting for the same resource the threads become deadlocked.

Deadlocks cannot be resolved the executing Java program appears to be stuck. Argent for Java monitors

all live threads in a JVM for deadlock conditions.

Trade secret of Argent Software
 Confidential and Proprietary Information Page 77 of 89

Uptime Rule

This rule monitors the length of time the JVM has been active

Trade secret of Argent Software
 Confidential and Proprietary Information Page 78 of 89

Just-In-Time Compiler Statistics Rules

The Java compiler converts the Java code into a bytecode which is then translated into machine

instructions understandable by a particular machine or device. The Just-in-Time (JIT) compiler is how Java

can be adapted to so many platforms. Since the JIT compilation process takes place as a Java program

executes, it can impact performance.

Total Compilation Time Rule

This rule monitors total time consumed by JIT compilation within a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 79 of 89

System Memory Usage Rule

Swap Space Usage Rule

This rule monitors the total amount of swap space usage

Trade secret of Argent Software
 Confidential and Proprietary Information Page 80 of 89

Physical Memory Usage Rule

This rule monitors physical memory usage within a JVM

Trade secret of Argent Software
 Confidential and Proprietary Information Page 81 of 89

CPU Uptime Rule

This rule monitors JVM uptime

Trade secret of Argent Software
 Confidential and Proprietary Information Page 82 of 89

Custom MBeans Attributes Rules

This Rule is configured to save the collection count of Concurrent Mark Sweep (CMS) Collector to Argent

Predictor database and to a custom database table named 'ARGSOFT_JAVA_MBEANS'

Configure 'Custom MBeans Attribute Delta Rules' to Alert based on the values saved in

'ARGSOFT_JAVA_MBEANS' table for a specific Object\Counter\Instance

Trade secret of Argent Software
 Confidential and Proprietary Information Page 83 of 89

Custom MBeans Attribute Delta Rules

This Rule checks if the difference in maximum and minimum values recorded by a Custom MBeans

Attribute Rule, in a specified interval of time, exceeds the threshold

Please make sure the correct combination of Object, Counter and Instance are configured, which is the

replica of the corresponding Custom MBeans Attribute Rule

In this sample Rule, the Rule brakes if the difference between the maximum and minimum values recorded

between12:00 and 13:00 exceeds 100

Check Appendix to know more about MBeans Attributes

Trade secret of Argent Software
 Confidential and Proprietary Information Page 84 of 89

UNIX Rules

This rule checks the existence of a Java program

Trade secret of Argent Software
 Confidential and Proprietary Information Page 85 of 89

JVM Logon Rules

Determines if a JVM can be connected using JMX

The Logon credentials should be specified in the licensed server manager

Trade secret of Argent Software
 Confidential and Proprietary Information Page 86 of 89

Appendix

To check on the available attributes provided by the MBeans, and configure the Custom MBeans Attributes

Rule, do the following

• Run the jconsole.exe file from the following path in the Argent Server:

{Java Installed Drive}:\Program Files (x86)\Java\jdk1.8.0_51\bin

Trade secret of Argent Software
 Confidential and Proprietary Information Page 87 of 89

• In the Jconsole: New Connection screen, select Rempte Process, specify the credentials and click

the Connect button

Trade secret of Argent Software
 Confidential and Proprietary Information Page 88 of 89

• In the Java Monitoring & Management Console screen, select MBeans tab, expand the tree and

select an object to list the Attributes availble under it

Trade secret of Argent Software
 Confidential and Proprietary Information Page 89 of 89

• Copy the Object name (highlighted in green in the above screenshot) from the screen and paste it in

the JMX Object Name field of the Custom MBeans Attributes Rule. Name of the Attrinute to be

monitored should be specified in the Attribute Name field

